genlib/cordic: cleanup, documentation, unittests

This commit is contained in:
Robert Jordens 2013-11-30 06:55:01 -07:00 committed by Sebastien Bourdeauducq
parent e54fa6f5f4
commit 9762546c95
4 changed files with 584 additions and 192 deletions

View file

@ -21,3 +21,10 @@ migen API Documentation
.. automodule:: migen.genlib.coding
:members:
:show-inheritance:
:mod:`genlib.cordic` Module
------------------------------
.. automodule:: migen.genlib.cordic
:members:
:show-inheritance:

115
examples/sim/cordic_err.py Normal file
View file

@ -0,0 +1,115 @@
import random
import numpy as np
import matplotlib.pyplot as plt
from migen.fhdl.std import *
from migen.fhdl import verilog
from migen.genlib.cordic import Cordic
from migen.sim.generic import Simulator
class TestBench(Module):
def __init__(self, n=None, xmax=.98, i=None, **kwargs):
self.submodules.cordic = Cordic(**kwargs)
if n is None:
n = 1<<flen(self.cordic.xi)
self.c = c = 2**(flen(self.cordic.xi) - 1)
self.cz = cz = 2**(flen(self.cordic.zi) - 1)
if i is None:
i = [(int(xmax*c/self.cordic.gain), 0, int(cz*(i/n - .5)))
for i in range(n)]
self.i = i
random.shuffle(self.i)
self.ii = iter(self.i)
self.o = []
def do_simulation(self, s):
if s.rd(self.cordic.new_in):
try:
xi, yi, zi = next(self.ii)
except StopIteration:
s.interrupt = True
return
s.wr(self.cordic.xi, xi)
s.wr(self.cordic.yi, yi)
s.wr(self.cordic.zi, zi)
if s.rd(self.cordic.new_out):
xo = s.rd(self.cordic.xo)
yo = s.rd(self.cordic.yo)
zo = s.rd(self.cordic.zo)
self.o.append((xo, yo, zo))
def run_io(self):
with Simulator(self) as sim:
sim.run()
del self.i[-1], self.o[0]
if self.i[0] != (0, 0, 0):
assert self.o[0] != (0, 0, 0)
if self.i[-1] != self.i[-2]:
assert self.o[-1] != self.o[-2], self.o[-2:]
def rms_err(width, guard=None, stages=None, n=None):
tb = TestBench(width=width, guard=guard, stages=stages,
n=n, eval_mode="combinatorial")
tb.run_io()
c = 2**(flen(tb.cordic.xi) - 1)
cz = 2**(flen(tb.cordic.zi) - 1)
g = tb.cordic.gain
xi, yi, zi = np.array(tb.i).T/c
zi *= c/cz*tb.cordic.zmax
xo1, yo1, zo1 = np.array(tb.o).T
xo = np.floor(c*g*(np.cos(zi)*xi - np.sin(zi)*yi))
yo = np.floor(c*g*(np.sin(zi)*xi + np.cos(zi)*yi))
dx = xo1 - xo
dy = yo1 - yo
mm = np.fabs([dx, dy]).max()
rms = np.sqrt(dx**2 + dy**2).sum()/len(xo)
return rms, mm
def rms_err_map():
widths, stages = np.mgrid[8:33:1, 8:37:1]
errf = np.vectorize(lambda w, s: _rms_err(int(w), None, int(s), n=333))
err = errf(widths, stages)
print(err)
lev = np.arange(10)
fig, ax = plt.subplots()
c1 = ax.contour(widths, stages, err[0], lev/10, cmap=plt.cm.Greys_r)
c2 = ax.contour(widths, stages, err[1], lev, cmap=plt.cm.Reds_r)
ax.plot(widths[:, 0], stages[0, np.argmin(err[0], 1)], "ko")
ax.plot(widths[:, 0], stages[0, np.argmin(err[1], 1)], "ro")
print(widths[:, 0], stages[0, np.argmin(err[0], 1)],
stages[0, np.argmin(err[1], 1)])
ax.set_xlabel("width")
ax.set_ylabel("stages")
ax.grid("on")
fig.colorbar(c1)
fig.colorbar(c2)
fig.savefig("cordic_rms.pdf")
def plot_function(**kwargs):
tb = TestBench(eval_mode="combinatorial", **kwargs)
tb.run_io()
c = 2**(flen(tb.cordic.xi) - 1)
cz = 2**(flen(tb.cordic.zi) - 1)
g = tb.cordic.gain
xi, yi, zi = np.array(tb.i).T
xo, yo, zo = np.array(tb.o).T
fig, ax = plt.subplots()
ax.plot(zi, xo, "r,")
ax.plot(zi, yo, "g,")
ax.plot(zi, zo, "g,")
if __name__ == "__main__":
c = Cordic(width=16, guard=None, eval_mode="combinatorial")
print(verilog.convert(c, ios={c.xi, c.yi, c.zi, c.xo, c.yo, c.zo,
c.new_in, c.new_out}))
#print(rms_err(8))
#rms_err_map()
#plot_function(func_mode="hyperbolic", xmax=.3, width=16, n=333)
#plot_function(func_mode="circular", width=16, n=333)
#plot_function(func_mode="hyperbolic", cordic_mode="vector",
# xmax=.3, width=16, n=333)
#plot_function(func_mode="circular", width=16, n=333)
plt.show()

View file

@ -1,71 +1,202 @@
from math import atan, atanh, log, sqrt, pi
from math import atan, atanh, log, sqrt, pi, ceil
from migen.fhdl.std import *
class TwoQuadrantCordic(Module):
"""
"""Coordinate rotation digital computer
Trigonometric, and arithmetic functions implemented using
additions/subtractions and shifts.
http://eprints.soton.ac.uk/267873/1/tcas1_cordic_review.pdf
http://www.andraka.com/files/crdcsrvy.pdf
http://zatto.free.fr/manual/Volder_CORDIC.pdf
The way the CORDIC is executed is controlled by `eval_mode`.
If `"iterative"` the stages are iteratively evaluated, one per clock
cycle. This mode uses the least amount of registers, but has the
lowest throughput and highest latency. If `"pipelined"` all stages
are executed in every clock cycle but separated by registers. This
mode has full throughput but uses many registers and has large
latency. If `"combinatorial"`, there are no registers, throughput is
maximal and latency is zero. `"pipelined"` and `"combinatorial"` use
the same number of sphifters and adders.
The type of trigonometric/arithmetic function is determined by
`cordic_mode` and `func_mode`. :math:`g` is the gain of the CORDIC.
* rotate-circular: rotate the vector `(xi, yi)` by an angle `zi`.
Used to calculate trigonometric functions, `sin(), cos(),
tan() = sin()/cos()`, or to perform polar-to-cartesian coordinate
transformation:
.. math::
x_o = g \\cos(z_i) x_i - g \\sin(z_i) y_i
y_o = g \\sin(z_i) x_i + g \\cos(z_i) y_i
* vector-circular: determine length and angle of the vector
`(xi, yi)`. Used to calculate `arctan(), sqrt()` or
to perform cartesian-to-polar transformation:
.. math::
x_o = g\\sqrt{x_i^2 + y_i^2}
z_o = z_i + \\tan^{-1}(y_i/x_i)
* rotate-hyperbolic: hyperbolic functions of `zi`. Used to
calculate hyprbolic functions, `sinh, cosh, tanh = cosh/sinh,
exp = cosh + sinh`:
.. math::
x_o = g \\cosh(z_i) x_i + g \\sinh(z_i) y_i
y_o = g \\sinh(z_i) x_i + g \\cosh(z_i) z_i
* vector-hyperbolic: natural logarithm `ln(), arctanh()`, and
`sqrt()`. Use `x_i = a + b` and `y_i = a - b` to obtain `2*
sqrt(a*b)` and `ln(a/b)/2`:
.. math::
x_o = g\\sqrt{x_i^2 - y_i^2}
z_o = z_i + \\tanh^{-1}(y_i/x_i)
* rotate-linear: multiply and accumulate (not a very good
multiplier implementation):
.. math::
y_o = g(y_i + x_i z_i)
* vector-linear: divide and accumulate:
.. math::
z_o = g(z_i + y_i/x_i)
Parameters
----------
width : int
Bit width of the input and output signals. Defaults to 16. Input
and output signals are signed.
widthz : int
Bit with of `zi` and `zo`. Defaults to the `width`.
stages : int or None
Number of CORDIC incremental rotation stages. Defaults to
`width + min(1, guard)`.
guard : int or None
Add guard bits to the intermediate signals. If `None`,
defaults to `guard = log2(width)` which guarantees accuracy
to `width` bits.
eval_mode : str, {"iterative", "pipelined", "combinatorial"}
cordic_mode : str, {"rotate", "vector"}
func_mode : str, {"circular", "linear", "hyperbolic"}
Evaluation and arithmetic mode. See above.
Attributes
----------
xi, yi, zi : Signal(width), in
Input values, signed.
xo, yo, zo : Signal(width), out
Output values, signed.
new_out : Signal(1), out
Asserted if output values are freshly updated in the current
cycle.
new_in : Signal(1), out
Asserted if new input values are being read in the next cycle.
zmax : float
`zi` and `zo` normalization factor. Floating point `zmax`
corresponds to `1<<(widthz - 1)`. `x` and `y` are scaled such
that floating point `1` corresponds to `1<<(width - 1)`.
gain : float
Cumulative, intrinsic gain and scaling factor. In circular mode
`sqrt(xi**2 + yi**2)` should be no larger than `2**(width - 1)/gain`
to prevent overflow. Additionally, in hyperbolic and linear mode,
the operation itself can cause overflow.
interval : int
Output interval in clock cycles. Inverse throughput.
latency : int
Input-to-output latency. The result corresponding to the inputs
appears at the outputs `latency` cycles later.
Notes
-----
Each stage `i` in the CORDIC performs the following operation:
.. math::
x_{i+1} = x_i - m d_i y_i r^{-s_{m,i}},
y_{i+1} = y_i + d_i x_i r^{-s_{m,i}},
z_{i+1} = z_i - d_i a_{m,i},
where:
* :math:`d_i`: clockwise or counterclockwise, determined by
`sign(z_i)` in rotate mode or `sign(-y_i)` in vector mode.
* :math:`r`: radix of the number system (2)
* :math:`m`: 1: circular, 0: linear, -1: hyperbolic
* :math:`s_{m,i}`: non decreasing integer shift sequence
* :math:`a_{m,i}`: elemetary rotation angle: :math:`a_{m,i} =
\\tan^{-1}(\\sqrt{m} s_{m,i})/\\sqrt{m}`.
"""
def __init__(self, width=16, stages=None, guard=0,
def __init__(self, width=16, widthz=None, stages=None, guard=0,
eval_mode="iterative", cordic_mode="rotate",
func_mode="circular"):
# validate parameters
assert eval_mode in ("combinatorial", "pipelined", "iterative")
assert cordic_mode in ("rotate", "vector")
self.cordic_mode = cordic_mode
assert func_mode in ("circular", "linear", "hyperbolic")
self.cordic_mode = cordic_mode
self.func_mode = func_mode
if guard is None:
# guard bits to guarantee "width" accuracy
guard = int(log(width)/log(2))
if widthz is None:
widthz = width
if stages is None:
stages = width + guard
stages = width + min(1, guard) # cuts error below LSB
# calculate the constants
if func_mode == "circular":
s = range(stages)
a = [atan(2**-i) for i in s]
g = [sqrt(1 + 2**(-2*i)) for i in s]
zmax = pi/2
elif func_mode == "linear":
s = range(stages)
a = [2**-i for i in s]
g = [1 for i in s]
zmax = 2.
elif func_mode == "hyperbolic":
s = list(range(1, stages+1))
# need to repeat these stages:
j = 4
while j < stages+1:
s.append(j)
j = 3*j + 1
s.sort()
stages = len(s)
a = [atanh(2**-i) for i in s]
g = [sqrt(1 - 2**(-2*i)) for i in s]
zmax = 1.
# input output interface
self.xi = Signal((width, True))
self.yi = Signal((width, True))
self.zi = Signal((widthz, True))
self.xo = Signal((width, True))
self.yo = Signal((width, True))
self.zo = Signal((widthz, True))
self.new_in = Signal()
self.new_out = Signal()
a = [Signal((width+guard, True), "{}{}".format("a", i),
reset=int(round(ai*2**(width + guard - 1)/zmax)))
for i, ai in enumerate(a)]
self.zmax = zmax #/2**(width - 1)
self.gain = 1.
for gi in g:
self.gain *= gi
###
exec_target, num_reg, self.latency, self.interval = {
"combinatorial": (self.comb, stages + 1, 0, 1),
"pipelined": (self.sync, stages + 1, stages, 1),
"iterative": (self.sync, 3, stages + 1, stages + 1),
}[eval_mode]
a, s, self.zmax, self.gain = self._constants(stages, widthz + guard)
stages = len(a) # may have increased due to repetitions
# i/o and inter-stage signals
self.fresh = Signal()
self.xi, self.yi, self.zi, self.xo, self.yo, self.zo = (
Signal((width, True), l + io) for io in "io" for l in "xyz")
x, y, z = ([Signal((width + guard, True), "{}{}".format(l, i))
for i in range(num_reg)] for l in "xyz")
if eval_mode == "iterative":
num_sig = 3
self.interval = stages + 1
self.latency = stages + 2
else:
num_sig = stages + 1
self.interval = 1
if eval_mode == "pipelined":
self.latency = stages
else: # combinatorial
self.latency = 0
# inter-stage signals
x = [Signal((width + guard, True)) for i in range(num_sig)]
y = [Signal((width + guard, True)) for i in range(num_sig)]
z = [Signal((widthz + guard, True)) for i in range(num_sig)]
# hook up inputs and outputs to the first and last inter-stage
# signals
self.comb += [
x[0].eq(self.xi<<guard),
y[0].eq(self.yi<<guard),
@ -75,167 +206,143 @@ class TwoQuadrantCordic(Module):
self.zo.eq(z[-1]>>guard),
]
if eval_mode in ("combinatorial", "pipelined"):
self.comb += self.fresh.eq(1)
for i in range(stages):
exec_target += self.stage(x[i], y[i], z[i],
x[i + 1], y[i + 1], z[i + 1], i, a[i])
elif eval_mode == "iterative":
# we afford one additional iteration for register in/out
# shifting, trades muxes for registers
if eval_mode == "iterative":
# We afford one additional iteration for in/out.
i = Signal(max=stages + 1)
ai = Signal((width+guard, True))
self.comb += ai.eq(Array(a)[i])
exec_target += [
self.comb += [
self.new_in.eq(i == stages),
self.new_out.eq(i == 1),
]
ai = Signal((widthz + guard, True))
self.sync += ai.eq(Array(a)[i])
if range(stages) == s:
si = i - 1 # shortcut if no stage repetitions
else:
si = Signal(max=stages + 1)
self.sync += si.eq(Array(s)[i])
xi, yi, zi = x[1], y[1], z[1]
self.sync += [
self._stage(xi, yi, zi, xi, yi, zi, si, ai),
i.eq(i + 1),
If(i == stages,
i.eq(0),
self.fresh.eq(1),
Cat(x[1], y[1], z[1]).eq(Cat(x[0], y[0], z[0])),
Cat(x[2], y[2], z[2]).eq(Cat(x[1], y[1], z[1])),
).Else(
self.fresh.eq(0),
# in-place stages
self.stage(x[1], y[1], z[1], x[1], y[1], z[1], i, ai),
),
If(i == 0,
x[2].eq(xi),
y[2].eq(yi),
z[2].eq(zi),
xi.eq(x[0]),
yi.eq(y[0]),
zi.eq(z[0]),
)]
else:
self.comb += [
self.new_out.eq(1),
self.new_in.eq(1),
]
for i, si in enumerate(s):
stmt = self._stage(x[i], y[i], z[i],
x[i + 1], y[i + 1], z[i + 1], si, a[i])
if eval_mode == "pipelined":
self.sync += stmt
else: # combinatorial
self.comb += stmt
def stage(self, xi, yi, zi, xo, yo, zo, i, a):
"""
x_{i+1} = x_{i} - m*d_i*y_i*r**(-s_{m,i})
y_{i+1} = d_i*x_i*r**(-s_{m,i}) + y_i
z_{i+1} = z_i - d_i*a_{m,i}
def _constants(self, stages, bits):
if self.func_mode == "circular":
s = range(stages)
a = [atan(2**-i) for i in s]
g = [sqrt(1 + 2**(-2*i)) for i in s]
#zmax = sum(a)
# use pi anyway as the input z can cause overflow
# and we need the range for quadrant mapping
zmax = pi
elif self.func_mode == "linear":
s = range(stages)
a = [2**-i for i in s]
g = [1 for i in s]
#zmax = sum(a)
# use 2 anyway as this simplifies a and scaling
zmax = 2.
else: # hyperbolic
s = []
# need to repeat some stages:
j = 4
for i in range(stages):
if i == j:
s.append(j)
j = 3*j + 1
s.append(i + 1)
a = [atanh(2**-i) for i in s]
g = [sqrt(1 - 2**(-2*i)) for i in s]
zmax = sum(a)*2
a = [int(ai*2**(bits - 1)/zmax) for ai in a]
# round here helps the width=2**i - 1 case but hurts the
# important width=2**i case
gain = 1.
for gi in g:
gain *= gi
return a, s, zmax, gain
d_i: clockwise or counterclockwise
r: radix of the number system
m: 1: circular, 0: linear, -1: hyperbolic
s_{m,i}: non decreasing integer shift sequence
a_{m,i}: elemetary rotation angle
"""
dx, dy, dz = xi>>i, yi>>i, a
direction = {"rotate": zi < 0, "vector": yi >= 0}[self.cordic_mode]
dy = {"circular": dy, "linear": 0, "hyperbolic": -dy}[self.func_mode]
ret = If(direction,
xo.eq(xi + dy),
yo.eq(yi - dx),
def _stage(self, xi, yi, zi, xo, yo, zo, i, ai):
if self.cordic_mode == "rotate":
direction = zi < 0
else: # vector
direction = yi >= 0
dx = yi>>i
dy = xi>>i
dz = ai
if self.func_mode == "linear":
dx = 0
elif self.func_mode == "hyperbolic":
dx = -dx
stmt = If(direction,
xo.eq(xi + dx),
yo.eq(yi - dy),
zo.eq(zi + dz),
).Else(
xo.eq(xi - dy),
yo.eq(yi + dx),
xo.eq(xi - dx),
yo.eq(yi + dy),
zo.eq(zi - dz),
)
return ret
return stmt
class Cordic(TwoQuadrantCordic):
"""Four-quadrant CORDIC
Same as :class:`TwoQuadrantCordic` but with support and convergence
for `abs(zi) > pi/2 in circular rotate mode or `xi < 0` in circular
vector mode.
"""
def __init__(self, **kwargs):
TwoQuadrantCordic.__init__(self, **kwargs)
if not (self.func_mode, self.cordic_mode) == ("circular", "rotate"):
if self.func_mode != "circular":
return # no need to remap quadrants
cxi, cyi, czi, cxo, cyo, czo = (self.xi, self.yi, self.zi,
self.xo, self.yo, self.zo)
width = flen(self.xi)
for l in "xyz":
for d in "io":
setattr(self, l+d, Signal((width, True), l+d))
qin = Signal()
qout = Signal()
if self.latency == 0:
self.comb += qout.eq(qin)
elif self.latency == 1:
self.sync += qout.eq(qin)
else:
sr = Signal(self.latency-1)
self.sync += Cat(sr, qout).eq(Cat(qin, sr))
pi2 = (1<<(width-2))-1
self.zmax *= 2
widthz = flen(self.zi)
cxi, cyi, czi = self.xi, self.yi, self.zi
self.xi = Signal((width, True))
self.yi = Signal((width, True))
self.zi = Signal((widthz, True))
###
pi2 = 1<<(widthz - 2)
if self.cordic_mode == "rotate":
#rot = self.zi + pi2 < 0
rot = self.zi[-1] ^ self.zi[-2]
else: # vector
rot = self.xi < 0
#rot = self.xi[-1]
self.comb += [
# zi, zo are scaled to cover the range, this also takes
# care of mapping the zi quadrants
Cat(cxi, cyi, czi).eq(Cat(self.xi, self.yi, self.zi<<1)),
Cat(self.xo, self.yo, self.zo).eq(Cat(cxo, cyo, czo>>1)),
# shift in the (2,3)-quadrant flag
qin.eq((-self.zi < -pi2) | (self.zi+1 < -pi2)),
# need to remap xo/yo quadrants (2,3) -> (4,1)
If(qout,
self.xo.eq(-cxo),
self.yo.eq(-cyo),
)]
class TB(Module):
def __init__(self, n, **kwargs):
self.submodules.cordic = Cordic(**kwargs)
self.xi = [.9/self.cordic.gain] * n
self.yi = [0] * n
self.zi = [2*i/n-1 for i in range(n)]
self.xo = []
self.yo = []
self.zo = []
def do_simulation(self, s):
c = 2**(flen(self.cordic.xi)-1)
if s.rd(self.cordic.fresh):
self.xo.append(s.rd(self.cordic.xo))
self.yo.append(s.rd(self.cordic.yo))
self.zo.append(s.rd(self.cordic.zo))
if not self.xi:
s.interrupt = True
return
for r, v in zip((self.cordic.xi, self.cordic.yi, self.cordic.zi),
(self.xi, self.yi, self.zi)):
s.wr(r, int(v.pop(0)*c))
def _main():
from migen.fhdl import verilog
from migen.sim.generic import Simulator, TopLevel
from matplotlib import pyplot as plt
import numpy as np
c = Cordic(width=16, eval_mode="iterative",
cordic_mode="rotate", func_mode="circular")
print(verilog.convert(c, ios={c.xi, c.yi, c.zi, c.xo,
c.yo, c.zo}))
n = 200
tb = TB(n, width=8, guard=3, eval_mode="pipelined",
cordic_mode="rotate", func_mode="circular")
sim = Simulator(tb, TopLevel("cordic.vcd"))
sim.run(n*16+20)
plt.plot(tb.xo)
plt.plot(tb.yo)
plt.plot(tb.zo)
plt.show()
def _rms_err(width, stages, n):
from migen.sim.generic import Simulator
import numpy as np
import matplotlib.pyplot as plt
tb = TB(width=int(width), stages=int(stages), n=n,
eval_mode="combinatorial")
sim = Simulator(tb)
sim.run(n+100)
z = tb.cordic.zmax*(np.arange(n)/n*2-1)
x = np.cos(z)*.9
y = np.sin(z)*.9
dx = tb.xo[1:]-x*2**(width-1)
dy = tb.yo[1:]-y*2**(width-1)
return ((dx**2+dy**2)**.5).sum()/n
def _test_err():
from matplotlib import pyplot as plt
import numpy as np
widths, stages = np.mgrid[4:33:1, 4:33:1]
err = np.vectorize(lambda w, s: rms_err(w, s, 173))(widths, stages)
err = -np.log2(err)/widths
print(err)
plt.contour(widths, stages, err, 50, cmap=plt.cm.Greys)
plt.plot(widths[:, 0], stages[0, np.argmax(err, 1)], "bx-")
print(widths[:, 0], stages[0, np.argmax(err, 1)])
plt.colorbar()
plt.grid("on")
plt.show()
if __name__ == "__main__":
_main()
#_rms_err(16, 16, 345)
#_test_err()
cxi.eq(self.xi),
cyi.eq(self.yi),
czi.eq(self.zi),
If(rot,
cxi.eq(-self.xi),
cyi.eq(-self.yi),
czi.eq(self.zi + 2*pi2),
#czi.eq(self.zi ^ (2*pi2)),
),
]

163
migen/test/test_cordic.py Normal file
View file

@ -0,0 +1,163 @@
import unittest
from random import randrange, random
from math import *
from migen.fhdl.std import *
from migen.genlib.cordic import *
from migen.test.support import SimCase, SimBench
class CordicCase(SimCase, unittest.TestCase):
class TestBench(SimBench):
def __init__(self, **kwargs):
k = dict(width=8, guard=None, stages=None,
eval_mode="combinatorial", cordic_mode="rotate",
func_mode="circular")
k.update(kwargs)
self.submodules.dut = Cordic(**k)
def _run_io(self, n, gen, proc, delta=1, deltaz=1):
c = 2**(flen(self.tb.dut.xi) - 1)
g = self.tb.dut.gain
zm = self.tb.dut.zmax
pipe = {}
genn = [gen() for i in range(n)]
def cb(tb, s):
if s.rd(tb.dut.new_in):
if genn:
xi, yi, zi = genn.pop(0)
else:
s.interrupt = True
return
xi = floor(xi*c/g)
yi = floor(yi*c/g)
zi = floor(zi*c/zm)
s.wr(tb.dut.xi, xi)
s.wr(tb.dut.yi, yi)
s.wr(tb.dut.zi, zi)
pipe[s.cycle_counter] = xi, yi, zi
if s.rd(tb.dut.new_out):
t = s.cycle_counter - tb.dut.latency - 1
if t < 1:
return
xi, yi, zi = pipe.pop(t)
xo, yo, zo = proc(xi/c, yi/c, zi/c*zm)
xo = floor(xo*c*g)
yo = floor(yo*c*g)
zo = floor(zo*c/zm)
xo1 = s.rd(tb.dut.xo)
yo1 = s.rd(tb.dut.yo)
zo1 = s.rd(tb.dut.zo)
print((xi, yi, zi), (xo, yo, zo), (xo1, yo1, zo1))
self.assertAlmostEqual(xo, xo1, delta=delta)
self.assertAlmostEqual(yo, yo1, delta=delta)
self.assertAlmostEqual(abs(zo - zo1) % (2*c), 0, delta=deltaz)
self.run_with(cb)
def test_rot_circ(self):
def gen():
ti = 2*pi*random()
r = random()*.98
return r*cos(ti), r*sin(ti), (2*random() - 1)*pi
def proc(xi, yi, zi):
xo = cos(zi)*xi - sin(zi)*yi
yo = sin(zi)*xi + cos(zi)*yi
return xo, yo, 0
self._run_io(50, gen, proc, delta=2)
def test_rot_circ_16(self):
self.setUp(width=16)
self.test_rot_circ()
def test_rot_circ_pipe(self):
self.setUp(eval_mode="pipelined")
self.test_rot_circ()
def test_rot_circ_iter(self):
self.setUp(eval_mode="iterative")
self.test_rot_circ()
def _test_vec_circ(self):
def gen():
ti = pi*(2*random() - 1)
r = .98 #*random()
return r*cos(ti), r*sin(ti), 0 #pi*(2*random() - 1)
def proc(xi, yi, zi):
return sqrt(xi**2 + yi**2), 0, zi + atan2(yi, xi)
self._run_io(50, gen, proc)
def test_vec_circ(self):
self.setUp(cordic_mode="vector")
self._test_vec_circ()
def test_vec_circ_16(self):
self.setUp(width=16, cordic_mode="vector")
self._test_vec_circ()
def _test_rot_hyp(self):
def gen():
return .6, 0, 2.1*(random() - .5)
def proc(xi, yi, zi):
xo = cosh(zi)*xi - sinh(zi)*yi
yo = sinh(zi)*xi + cosh(zi)*yi
return xo, yo, 0
self._run_io(50, gen, proc, delta=2)
def test_rot_hyp(self):
self.setUp(func_mode="hyperbolic")
self._test_rot_hyp()
def test_rot_hyp_16(self):
self.setUp(func_mode="hyperbolic", width=16)
self._test_rot_hyp()
def test_rot_hyp_iter(self):
self.setUp(cordic_mode="rotate", func_mode="hyperbolic",
eval_mode="iterative")
self._test_rot_hyp()
def _test_vec_hyp(self):
def gen():
xi = random()*.6 + .2
yi = random()*xi*.8
return xi, yi, 0
def proc(xi, yi, zi):
return sqrt(xi**2 - yi**2), 0, atanh(yi/xi)
self._run_io(50, gen, proc)
def test_vec_hyp(self):
self.setUp(cordic_mode="vector", func_mode="hyperbolic")
self._test_vec_hyp()
def _test_rot_lin(self):
def gen():
xi = 2*random() - 1
if abs(xi) < .01:
xi = .01
yi = (2*random() - 1)*.5
zi = (2*random() - 1)*.5
return xi, yi, zi
def proc(xi, yi, zi):
return xi, yi + xi*zi, 0
self._run_io(50, gen, proc)
def test_rot_lin(self):
self.setUp(func_mode="linear")
self._test_rot_lin()
def _test_vec_lin(self):
def gen():
yi = random()*.95 + .05
if random() > 0:
yi *= -1
xi = abs(yi) + random()*(1 - abs(yi))
zi = 2*random() - 1
return xi, yi, zi
def proc(xi, yi, zi):
return xi, 0, zi + yi/xi
self._run_io(50, gen, proc, deltaz=2, delta=2)
def test_vec_lin(self):
self.setUp(func_mode="linear", cordic_mode="vector", width=8)
self._test_vec_lin()