soc/cores/spi: Integrate SPIWishboneBridge from https://github.com/xobs/spibone.

"The ability to bridge Wishbone is an incredibly powerful one. However, the various bridges can be rather heavy in terms of resource usage. This presents a simple bridge that operates over SPI."
This commit is contained in:
Sean Cross 2022-10-18 18:17:42 +02:00 committed by Florent Kermarrec
parent f5c9425e14
commit 9f52ed1207

View file

@ -0,0 +1,357 @@
#
# This file is part of LiteX.
#
# Copyright (c) 2019 Sean Cross <sean@xobs.io>
# SPDX-License-Identifier: BSD-2-Clause
from migen import *
from migen.fhdl.specials import Tristate, TSTriple
from migen.genlib.cdc import MultiReg
from litex.soc.integration.doc import ModuleDoc, AutoDoc
from litex.soc.interconnect import wishbone, stream
class Spi4WireDocumentation(ModuleDoc):
"""4-Wire SPI Protocol
The 4-wire SPI protocol does not require any pins to change direction, and
is therefore suitable for designs with level-shifters or without GPIOs that
can change direction.
While waiting for the response, the ``MISO`` line remains high. As soon as
a response is available, the device pulls the `MISO` line low and clocks
out either a ``0x00`` or `0x01` byte indicating whether it's a READ or a WRITE
that is being answered. Note that if the operation is fast enough, the
device will not pull the `MISO` line high and will immediately respond
with ``0x00`` or ``0x01``.
You can abort the operation by driving ``CS`` high. However, if a WRITE or
READ has already been initiated then it will not be aborted.
.. wavedrom::
:caption: 4-Wire SPI Operation
{ "signal": [
["Read",
{ "name": 'MOSI', "wave": 'x23...x|xxxxxx', "data": '0x01 [ADDRESS]'},
{ "name": 'MISO', "wave": 'x.....x|25...x', "data": '0x01 [DATA]' },
{ "name": 'CS', "wave": 'x0.....|.....x', "data": '1 2 3'},
{ "name": 'data bits', "wave": 'xx2222x|x2222x', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
],
{},
["Write",
{ "name": 'MOSI', "wave": 'x23...3...x|xx', "data": '0x00 [ADDRESS] [DATA]'},
{ "name": 'MISO', "wave": 'x.........1|2x', "data": '0x00' },
{ "name": 'CS', "wave": 'x0.........|.x', "data": '1 2 3'},
{ "name": 'data bits', "wave": 'xx22222222x|xx', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
]
]}
"""
class Spi3WireDocumentation(ModuleDoc):
"""3-Wire SPI Protocol
The 3-wire SPI protocol repurposes the ``MOSI`` line for both data input and
data output. The direction of the line changes immediately after the
address (for read) or the data (for write) and the device starts writing
``0xFF``.
As soon as data is available (read) or the data has been written (write),
the device drives the ``MOSI`` line low in order to clock out ``0x00``
or ``0x01``. This will always happen on a byte boundary.
You can abort the operation by driving ``CS`` high. However, if a WRITE or
READ has already been initiated then it will not be aborted.
.. wavedrom::
:caption: 3-Wire SPI Operation
{ "signal": [
["Read",
{ "name": 'MOSI', "wave": 'x23...5|55...x', "data": '0x01 [ADDRESS] 0xFF 0x01 [DATA]'},
{ "name": 'CS', "wave": 'x0.....|.....x', "data": '1 2 3'},
{ "name": 'data bits', "wave": 'xx2222x|x2222x', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
],
{},
["Write",
{ "name": 'MOSI', "wave": 'x23...3...5|50', "data": '0x00 [ADDRESS] [DATA] 0xFF 0x00'},
{ "name": 'CS', "wave": 'x0.........|.x', "data": '1 2 3'},
{ "name": 'data bits', "wave": 'xx22222222x|xx', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
]
]}
"""
class Spi2WireDocumentation(ModuleDoc):
"""2-Wire SPI Protocol
The 2-wire SPI protocol removes the ``CS`` line in favor of a sync byte.
Note that the 2-wire protocol has no way of interrupting communication,
so if the bus locks up the device must be reset. The direction of the
data line changes immediately after the address (for read) or the data
(for write) and the device starts writing ``0xFF``.
As soon as data is available (read) or the data has been written (write),
the device drives the ``MOSI`` line low in order to clock out ``0x00``
or ``0x01``. This will always happen on a byte boundary.
All transactions begin with a sync byte of ``0xAB``.
.. wavedrom::
:caption: 2-Wire SPI Operation
{ "signal": [
["Write",
{ "name": 'MOSI', "wave": '223...5|55...', "data": '0xAB 0x01 [ADDRESS] 0xFF 0x01 [DATA]'},
{ "name": 'data bits', "wave": 'xx2222x|x2222', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
],
{},
["Read",
{ "name": 'MOSI', "wave": '223...3...5|5', "data": '0xAB 0x00 [ADDRESS] [DATA] 0xFF 0x00'},
{ "name": 'data bits', "wave": 'xx22222222x|x', "data": '31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0'}
]
]}
"""
class SpiWishboneBridge(Module, ModuleDoc, AutoDoc):
"""Wishbone Bridge over SPI
This module allows for accessing a Wishbone bridge over a {}-wire protocol.
All operations occur on byte boundaries, and are big-endian.
The device can take a variable amount of time to respond, so the host should
continue polling after the operation begins. If the Wishbone bus is
particularly busy, such as during periods of heavy processing when the
CPU's icache is empty, responses can take many thousands of cycles.
The bridge core is designed to run at 1/4 the system clock.
"""
def __init__(self, pads, wires=4, with_tristate=True):
self.wishbone = wishbone.Interface()
# # #
self.__doc__ = self.__doc__.format(wires)
if wires == 4:
self.mod_doc = Spi4WireDocumentation()
elif wires == 3:
self.mod_doc = Spi3WireDocumentation()
elif wires == 2:
self.mod_doc = Spi2WireDocumentation()
clk = Signal()
cs_n = Signal()
mosi = Signal()
miso = Signal()
miso_en = Signal()
counter = Signal(8)
write_offset = Signal(5)
command = Signal(8)
address = Signal(32)
value = Signal(32)
wr = Signal()
sync_byte = Signal(8)
self.specials += [
MultiReg(pads.clk, clk),
]
if wires == 2:
io = TSTriple()
self.specials += io.get_tristate(pads.mosi)
self.specials += MultiReg(io.i, mosi)
self.comb += io.o.eq(miso)
self.comb += io.oe.eq(miso_en)
elif wires == 3:
self.specials += MultiReg(pads.cs_n, cs_n),
io = TSTriple()
self.specials += io.get_tristate(pads.mosi)
self.specials += MultiReg(io.i, mosi)
self.comb += io.o.eq(miso)
self.comb += io.oe.eq(miso_en)
elif wires == 4:
self.specials += MultiReg(pads.cs_n, cs_n),
self.specials += MultiReg(pads.mosi, mosi)
if with_tristate:
self.specials += Tristate(pads.miso, miso, ~cs_n)
else:
self.comb += pads.miso.eq(miso)
else:
raise ValueError("`wires` must be 2, 3, or 4")
clk_last = Signal()
clk_rising = Signal()
clk_falling = Signal()
self.sync += clk_last.eq(clk)
self.comb += clk_rising.eq(clk & ~clk_last)
self.comb += clk_falling.eq(~clk & clk_last)
fsm = FSM(reset_state="IDLE")
fsm = ResetInserter()(fsm)
self.submodules += fsm
self.comb += fsm.reset.eq(cs_n)
# Connect the Wishbone bus up to our values
self.comb += [
self.wishbone.adr.eq(address[2:]),
self.wishbone.dat_w.eq(value),
self.wishbone.sel.eq(2**len(self.wishbone.sel) - 1)
]
# Constantly have the counter increase, except when it's reset
# in the IDLE state
self.sync += If(cs_n, counter.eq(0)).Elif(clk_rising, counter.eq(counter + 1))
if wires == 2:
fsm.act("IDLE",
miso_en.eq(0),
NextValue(miso, 1),
If(clk_rising,
NextValue(sync_byte, Cat(mosi, sync_byte))
),
If(sync_byte[0:7] == 0b101011,
NextState("GET_TYPE_BYTE"),
NextValue(counter, 0),
NextValue(command, mosi),
)
)
elif wires == 3 or wires == 4:
fsm.act("IDLE",
miso_en.eq(0),
NextValue(miso, 1),
If(clk_rising,
NextState("GET_TYPE_BYTE"),
NextValue(command, mosi),
),
)
else:
raise ValueError("invalid `wires` count: {}".format(wires))
# Determine if it's a read or a write
fsm.act("GET_TYPE_BYTE",
miso_en.eq(0),
NextValue(miso, 1),
If(counter == 8,
# Write value
If(command == 0,
NextValue(wr, 1),
NextState("READ_ADDRESS"),
# Read value
).Elif(command == 1,
NextValue(wr, 0),
NextState("READ_ADDRESS"),
).Else(
NextState("END"),
),
),
If(clk_rising,
NextValue(command, Cat(mosi, command)),
),
)
fsm.act("READ_ADDRESS",
miso_en.eq(0),
If(counter == 32 + 8,
If(wr,
NextState("READ_VALUE"),
).Else(
NextState("READ_WISHBONE"),
)
),
If(clk_rising,
NextValue(address, Cat(mosi, address)),
),
)
fsm.act("READ_VALUE",
miso_en.eq(0),
If(counter == 32 + 32 + 8,
NextState("WRITE_WISHBONE"),
),
If(clk_rising,
NextValue(value, Cat(mosi, value)),
),
)
fsm.act("WRITE_WISHBONE",
self.wishbone.stb.eq(1),
self.wishbone.we.eq(1),
self.wishbone.cyc.eq(1),
miso_en.eq(1),
If(self.wishbone.ack | self.wishbone.err,
NextState("WAIT_BYTE_BOUNDARY"),
),
)
fsm.act("READ_WISHBONE",
self.wishbone.stb.eq(1),
self.wishbone.we.eq(0),
self.wishbone.cyc.eq(1),
miso_en.eq(1),
If(self.wishbone.ack | self.wishbone.err,
NextState("WAIT_BYTE_BOUNDARY"),
NextValue(value, self.wishbone.dat_r),
),
)
fsm.act("WAIT_BYTE_BOUNDARY",
miso_en.eq(1),
If(clk_falling,
If(counter[0:3] == 0,
NextValue(miso, 0),
# For writes, fill in the 0 byte response
If(wr,
NextState("WRITE_WR_RESPONSE"),
).Else(
NextState("WRITE_RESPONSE"),
),
),
),
)
# Write the "01" byte that indicates a response
fsm.act("WRITE_RESPONSE",
miso_en.eq(1),
If(clk_falling,
If(counter[0:3] == 0b111,
NextValue(miso, 1),
).Elif(counter[0:3] == 0,
NextValue(write_offset, 31),
NextState("WRITE_VALUE")
),
),
)
# Write the actual value
fsm.act("WRITE_VALUE",
miso_en.eq(1),
NextValue(miso, value >> write_offset),
If(clk_falling,
NextValue(write_offset, write_offset - 1),
If(write_offset == 0,
NextValue(miso, 0),
NextState("END"),
),
),
)
fsm.act("WRITE_WR_RESPONSE",
miso_en.eq(1),
If(clk_falling,
If(counter[0:3] == 0,
NextState("END"),
),
),
)
if wires == 3 or wires == 4:
fsm.act("END",
miso_en.eq(1),
)
elif wires == 2:
fsm.act("END",
miso_en.eq(0),
NextValue(sync_byte, 0),
NextState("IDLE")
)
else:
raise ValueError("invalid `wires` count: {}".format(wires))