ASMI simulation models

This commit is contained in:
Sebastien Bourdeauducq 2012-06-12 16:57:00 +02:00
parent b7a84b3750
commit a591510189
3 changed files with 153 additions and 12 deletions

View File

@ -590,7 +590,7 @@ A FIR filter
.. include:: ../examples/fir.py
:code: python
Wishbone
========
.. include:: ../examples/wb_initiator.py
Abstract bus transactions
=========================
.. include:: ../examples/abstract_transactions.py
:code: python

View File

@ -6,7 +6,7 @@ from random import Random
from migen.fhdl.structure import *
from migen.fhdl import autofragment
from migen.bus.transactions import *
from migen.bus import wishbone
from migen.bus import wishbone, asmibus
from migen.sim.generic import Simulator
from migen.sim.icarus import Runner
@ -33,23 +33,30 @@ def my_generator():
yield None
# Our bus slave.
class MyModel(wishbone.TargetModel):
def __init__(self):
self.prng = Random(763627)
class MyModel:
def read(self, address):
return address + 4
class MyModelWB(MyModel, wishbone.TargetModel):
def __init__(self):
self.prng = Random(763627)
def can_ack(self, bus):
# Simulate variable latency.
return self.prng.randrange(0, 2)
def main():
class MyModelASMI(MyModel, asmibus.TargetModel):
pass
def test_wishbone():
print("*** Wishbone test")
# The "wishbone.Initiator" library component runs our generator
# and manipulates the bus signals accordingly.
master = wishbone.Initiator(my_generator())
# The "wishbone.Target" library component examines the bus signals
# and calls into our model object.
slave = wishbone.Target(MyModel())
slave = wishbone.Target(MyModelWB())
# The "wishbone.Tap" library component examines the bus at the slave port
# and displays the transactions on the console (<TRead...>/<TWrite...>).
tap = wishbone.Tap(slave.bus)
@ -63,7 +70,26 @@ def main():
sim = Simulator(fragment, Runner())
sim.run()
main()
def test_asmi():
print("*** ASMI test")
# Create a hub with one port for our initiator.
hub = asmibus.Hub(32, 32)
port = hub.get_port()
hub.finalize()
# Create the initiator, target and tap (similar to the Wishbone case).
master = asmibus.Initiator(port, my_generator())
slave = asmibus.Target(hub, MyModelASMI())
tap = asmibus.Tap(hub)
# Run the simulation (same as the Wishbone case).
def end_simulation(s):
s.interrupt = master.done
fragment = autofragment.from_local() + Fragment(sim=[end_simulation])
sim = Simulator(fragment, Runner())
sim.run()
test_wishbone()
test_asmi()
# Output:
# <TWrite adr:0x0 dat:0x0>

View File

@ -1,6 +1,7 @@
from migen.fhdl.structure import *
from migen.corelogic.misc import optree
from migen.bus.transactions import *
from migen.sim.generic import Proxy
class FinalizeError(Exception):
pass
@ -169,6 +170,49 @@ class Hub:
]
return ports + Fragment(comb)
class Tap:
def __init__(self, hub, handler=print):
self.hub = hub
self.handler = handler
self.tag_to_transaction = dict()
self.transaction = None
def do_simulation(self, s):
hub = Proxy(s, self.hub)
# Pull any data announced in the previous cycle.
if isinstance(self.transaction, TWrite):
self.transaction.data = hub.dat_w
self.transaction.sel = ~hub.dat_wm
self.handler(self.transaction)
self.transaction = None
if isinstance(self.transaction, TRead):
self.transaction.data = hub.dat_r
self.handler(self.transaction)
self.transaction = None
# Tag issue. Transaction objects are created here
# and placed into the tag_to_transaction dictionary.
for tag, slot in enumerate(self.hub.get_slots()):
if s.rd(slot.allocate):
adr = s.rd(slot.allocate_adr)
we = s.rd(slot.allocate_we)
if we:
transaction = TWrite(adr)
else:
transaction = TRead(adr)
transaction.latency = s.cycle_counter
self.tag_to_transaction[tag] = transaction
# Tag call.
if hub.call:
transaction = self.tag_to_transaction[hub.tag_call]
transaction.latency = s.cycle_counter - transaction.latency + 1
self.transaction = transaction
def get_fragment(self):
return Fragment(sim=[self.do_simulation])
class Initiator:
def __init__(self, port, generator):
self.port = port
@ -225,3 +269,74 @@ class Initiator:
def get_fragment(self):
return Fragment(sim=[self.do_simulation])
class TargetModel:
def __init__(self):
self.last_slot = 0
def read(self, address):
return 0
def write(self, address, data, mask):
pass
# Round-robin scheduling.
def select_slot(self, pending_slots):
if not pending_slots:
return -1
self.last_slot += 1
if self.last_slot > max(pending_slots):
self.last_slot = 0
while self.last_slot not in pending_slots:
self.last_slot += 1
return self.last_slot
class Target:
def __init__(self, hub, model):
self.hub = hub
self.model = model
self._calling_tag = -1
self._write_request_d = -1
self._write_request = -1
self._read_request = -1
def do_simulation(self, s):
slots = self.hub.get_slots()
# Data I/O
if self._write_request >= 0:
self.model.write(self._write_request,
s.rd(self.hub.dat_w), s.rd(self.hub.dat_wm))
if self._read_request >= 0:
s.wr(self.hub.dat_r, self.model.read(self._read_request))
# Request pipeline
self._read_request = -1
self._write_request = self._write_request_d
self._write_request_d = -1
# Examine pending slots and possibly choose one.
# Note that we do not use the SLOT_PROCESSING state here.
# Selected slots are immediately called.
pending_slots = set()
for tag, slot in enumerate(slots):
if tag != self._calling_tag and s.rd(slot.state) == SLOT_PENDING:
pending_slots.add(tag)
slot_to_call = self.model.select_slot(pending_slots)
# Call slot.
if slot_to_call >= 0:
slot = slots[slot_to_call]
s.wr(self.hub.call, 1)
s.wr(self.hub.tag_call, slot_to_call)
self._calling_tag = slot_to_call
if s.rd(slot.we):
self._write_request_d = s.rd(slot.adr)
else:
self._read_request = s.rd(slot.adr)
else:
s.wr(self.hub.call, 0)
self._calling_tag = -1
def get_fragment(self):
return Fragment(sim=[self.do_simulation])