mirror of
https://github.com/enjoy-digital/litex.git
synced 2025-01-04 09:52:26 -05:00
soc/cores/led: Review/Rework #1265.
- Split FSM in Main FSM/Xfer FSM to decouple Led data read from bit xfer and do read during xfer. - Only keep optimization that are easily to understand. - Default to new WS2812 revision (Since also works on old revision). - Test 75/50/25MHz sys_clk_freq.
This commit is contained in:
parent
bd6f5fbf9d
commit
d39c3ed626
2 changed files with 114 additions and 117 deletions
|
@ -1,10 +1,12 @@
|
|||
#
|
||||
# This file is part of LiteX.
|
||||
#
|
||||
# Copyright (c) 2020-2021 Florent Kermarrec <florent@enjoy-digital.fr>
|
||||
# Copyright (c) 2020-2022 Florent Kermarrec <florent@enjoy-digital.fr>
|
||||
# Copyright (c) 2022 Wolfgang Nagele <mail@wnagele.com>
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
|
||||
import math
|
||||
|
||||
from migen import *
|
||||
from migen.genlib.misc import WaitTimer
|
||||
|
||||
|
@ -16,24 +18,6 @@ from litex.soc.interconnect import wishbone
|
|||
_CHASER_MODE = 0
|
||||
_CONTROL_MODE = 1
|
||||
|
||||
|
||||
# Based on: migen.genlib.misc.WaitTimer
|
||||
class ModifiableWaitTimer(Module):
|
||||
def __init__(self, t):
|
||||
self.wait = Signal()
|
||||
self.done = Signal()
|
||||
self.reset = Signal(bits_for(t), reset=t)
|
||||
|
||||
# # #
|
||||
|
||||
count = Signal(bits_for(t), reset=t)
|
||||
self.comb += self.done.eq(count == 0)
|
||||
self.sync += \
|
||||
If(self.wait,
|
||||
If(~self.done, count.eq(count - 1))
|
||||
).Else(count.eq(self.reset))
|
||||
|
||||
|
||||
class LedChaser(Module, AutoCSR):
|
||||
def __init__(self, pads, sys_clk_freq, period=1e0):
|
||||
self.pads = pads
|
||||
|
@ -74,13 +58,6 @@ class LedChaser(Module, AutoCSR):
|
|||
class WS2812(Module):
|
||||
"""WS2812/NeoPixel Led Driver.
|
||||
|
||||
Hardware Revisions
|
||||
------------------
|
||||
WS2812 hardware has several different revisions that have been released over the years.
|
||||
Unfortunately not all of them are compatible with the timings they require. Especially
|
||||
the reset timing has substantial differences between older and newer models.
|
||||
Adjust the hardware_revision to your needs depending on which model you are using.
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
|
@ -95,7 +72,7 @@ class WS2812(Module):
|
|||
- Each Led will "digest" a 24-bit control word: (MSB) G-R-B (LSB).
|
||||
- Leds can be chained through DIN->DOUT connection.
|
||||
|
||||
Each control sequence is separated by a reset code: Line low for > 50us.
|
||||
Each control sequence is separated by a reset code: Line low for > 50us (old) or > 280us (new).
|
||||
Ones are transmitted as:
|
||||
┌─────┐
|
||||
│ T0H │ │ T0H = 400ns +-150ns
|
||||
|
@ -107,6 +84,14 @@ class WS2812(Module):
|
|||
│ │ T1L │ T1L = 450ns +-150ns
|
||||
└──────┘
|
||||
|
||||
Hardware Revisions
|
||||
------------------
|
||||
Different revision of WS2812 have been released over the years. Unfortunately not all of them
|
||||
have compatible timings, especially on reset that has a minimal width of 50us on older models
|
||||
and 280us on newer models. By default, the core will use the timings of the newer models since
|
||||
also working on older models. Reset pulse and refresh rate can be improve for older models by
|
||||
setting revision to "old".
|
||||
|
||||
Integration
|
||||
-----------
|
||||
|
||||
|
@ -141,12 +126,12 @@ class WS2812(Module):
|
|||
sys_clk_freq: int, in
|
||||
System Clk Frequency.
|
||||
"""
|
||||
def __init__(self, pad, nleds, sys_clk_freq, bus_mastering=False, bus_base=None, hardware_revision="old", test_data=None):
|
||||
def __init__(self, pad, nleds, sys_clk_freq, bus_mastering=False, bus_base=None, revision="new", init=None):
|
||||
if bus_mastering:
|
||||
self.bus = bus = wishbone.Interface(data_width=32)
|
||||
else:
|
||||
# Memory.
|
||||
mem = Memory(32, nleds, init=test_data)
|
||||
mem = Memory(32, nleds, init=init)
|
||||
port = mem.get_port()
|
||||
self.specials += mem, port
|
||||
|
||||
|
@ -160,33 +145,36 @@ class WS2812(Module):
|
|||
|
||||
|
||||
# Internal Signals.
|
||||
led_data = Signal(24)
|
||||
bit_count = Signal(8)
|
||||
led_count = Signal(max = nleds + 1)
|
||||
led_count = Signal(max=nleds)
|
||||
led_data = Signal(24)
|
||||
xfer_start = Signal()
|
||||
xfer_done = Signal()
|
||||
xfer_data = Signal(24)
|
||||
|
||||
# Timings
|
||||
self.trst = trst = 285e-6 if hardware_revision == "new" else 55e-6
|
||||
self.t0h = t0h = 0.40e-6
|
||||
self.t1h = t1h = 0.80e-6
|
||||
self.t0l = t0l = 0.85e-6
|
||||
self.t1l = t1l = 0.45e-6
|
||||
self.trst = trst = {"old": 50e-6*1.25, "new": 280e-6*1.25}[revision]
|
||||
self.t0h = t0h = 0.40e-6
|
||||
self.t0l = t0l = 0.85e-6
|
||||
self.t1h = t1h = 0.80e-6
|
||||
self.t1l = t1l = 0.45e-6
|
||||
|
||||
# Timers.
|
||||
t0h_timer = ModifiableWaitTimer(int(t0h*sys_clk_freq))
|
||||
t0l_timer = ModifiableWaitTimer(int(t0l*sys_clk_freq) - 1) # compensate for data clk in cycle
|
||||
self.submodules += t0h_timer, t0l_timer
|
||||
|
||||
t1h_timer = ModifiableWaitTimer(int(t1h*sys_clk_freq))
|
||||
t1l_timer = ModifiableWaitTimer(int(t1l*sys_clk_freq) - 1) # compensate for data clk in cycle
|
||||
self.submodules += t1h_timer, t1l_timer
|
||||
|
||||
trst_timer = ModifiableWaitTimer(int(trst*sys_clk_freq))
|
||||
trst_timer = WaitTimer(int(trst*sys_clk_freq))
|
||||
self.submodules += trst_timer
|
||||
|
||||
# FSM
|
||||
t0h_timer = WaitTimer(int(t0h*sys_clk_freq))
|
||||
t0l_timer = WaitTimer(int(t0l*sys_clk_freq) - 1) # Compensate Xfer FSM latency.
|
||||
self.submodules += t0h_timer, t0l_timer
|
||||
|
||||
t1h_timer = WaitTimer(int(t1h*sys_clk_freq))
|
||||
t1l_timer = WaitTimer(int(t1l*sys_clk_freq) - 1) # Compensate Xfer FSM latency.
|
||||
self.submodules += t1h_timer, t1l_timer
|
||||
|
||||
# Main FSM.
|
||||
self.submodules.fsm = fsm = FSM(reset_state="RST")
|
||||
fsm.act("RST",
|
||||
trst_timer.wait.eq(1),
|
||||
NextValue(led_count, 0),
|
||||
trst_timer.wait.eq(xfer_done),
|
||||
If(trst_timer.done,
|
||||
NextState("LED-READ")
|
||||
)
|
||||
|
@ -199,69 +187,74 @@ class WS2812(Module):
|
|||
bus.sel.eq(2**(bus.data_width//8)-1),
|
||||
bus.adr.eq(bus_base[2:] + led_count),
|
||||
If(bus.ack,
|
||||
NextValue(bit_count, 24-1),
|
||||
NextValue(led_data, bus.dat_r),
|
||||
NextState("BIT-TEST")
|
||||
NextState("LED-SEND")
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.comb += port.adr.eq(led_count)
|
||||
fsm.act("LED-READ",
|
||||
NextValue(bit_count, 24-1),
|
||||
NextValue(led_count, led_count + 1),
|
||||
NextState("LED-LATCH")
|
||||
)
|
||||
fsm.act("LED-LATCH",
|
||||
NextValue(led_data, port.dat_r),
|
||||
NextState("BIT-TEST")
|
||||
NextState("LED-SEND")
|
||||
)
|
||||
|
||||
fsm.act("BIT-TEST",
|
||||
# by including the cycles spent on checking for conditions
|
||||
# data shifting, etc. we make the timing more precise
|
||||
If(bit_count == 0,
|
||||
# BIT-SHIFT + LED-SHIFT + LED-READ + BIT-TEST
|
||||
NextValue(t0l_timer.reset, t0l_timer.reset.reset - 4),
|
||||
NextValue(t1l_timer.reset, t1l_timer.reset.reset - 4)
|
||||
).Else(
|
||||
# BIT-SHIFT + BIT-TEST
|
||||
NextValue(t0l_timer.reset, t0l_timer.reset.reset - 2),
|
||||
NextValue(t1l_timer.reset, t1l_timer.reset.reset - 2)
|
||||
),
|
||||
If(led_data[-1] == 0,
|
||||
NextState("ZERO-SEND"),
|
||||
),
|
||||
If(led_data[-1] == 1,
|
||||
NextState("ONE-SEND"),
|
||||
),
|
||||
)
|
||||
fsm.act("ZERO-SEND",
|
||||
t0h_timer.wait.eq(1),
|
||||
t0l_timer.wait.eq(t0h_timer.done),
|
||||
pad.eq(~t0h_timer.done),
|
||||
If(t0l_timer.done,
|
||||
NextState("BIT-SHIFT")
|
||||
)
|
||||
)
|
||||
fsm.act("ONE-SEND",
|
||||
t1h_timer.wait.eq(1),
|
||||
t1l_timer.wait.eq(t1h_timer.done),
|
||||
pad.eq(~t1h_timer.done),
|
||||
If(t1l_timer.done,
|
||||
NextState("BIT-SHIFT")
|
||||
)
|
||||
)
|
||||
fsm.act("BIT-SHIFT",
|
||||
NextValue(led_data, Cat(Signal(), led_data)),
|
||||
If(bit_count == 0,
|
||||
fsm.act("LED-SEND",
|
||||
If(xfer_done,
|
||||
xfer_start.eq(1),
|
||||
NextState("LED-SHIFT")
|
||||
).Else(
|
||||
NextValue(bit_count, bit_count - 1),
|
||||
NextState("BIT-TEST")
|
||||
)
|
||||
)
|
||||
fsm.act("LED-SHIFT",
|
||||
If(led_count == nleds,
|
||||
NextValue(led_count, 0),
|
||||
If(led_count == (nleds - 1),
|
||||
NextState("RST")
|
||||
).Else(
|
||||
NextValue(led_count, led_count + 1),
|
||||
NextState("LED-READ")
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# XFER FSM.
|
||||
xfer_bit = Signal(5)
|
||||
xfer_fsm = FSM(reset_state="IDLE")
|
||||
self.submodules += xfer_fsm
|
||||
xfer_fsm.act("IDLE",
|
||||
xfer_done.eq(1),
|
||||
If(xfer_start,
|
||||
NextValue(xfer_bit, 24-1),
|
||||
NextValue(xfer_data, led_data),
|
||||
NextState("RUN")
|
||||
)
|
||||
)
|
||||
xfer_fsm.act("RUN",
|
||||
# Send a one.
|
||||
If(xfer_data[-1],
|
||||
t1h_timer.wait.eq(1),
|
||||
t1l_timer.wait.eq(t1h_timer.done),
|
||||
pad.eq(~t1h_timer.done),
|
||||
# Send a zero.
|
||||
).Else(
|
||||
t0h_timer.wait.eq(1),
|
||||
t0l_timer.wait.eq(t0h_timer.done),
|
||||
pad.eq(~t0h_timer.done),
|
||||
),
|
||||
|
||||
# When bit has been sent:
|
||||
If(t0l_timer.done | t1l_timer.done,
|
||||
# Clear wait on timers.
|
||||
t0h_timer.wait.eq(0),
|
||||
t0l_timer.wait.eq(0),
|
||||
t1h_timer.wait.eq(0),
|
||||
t1l_timer.wait.eq(0),
|
||||
# Shift xfer_data.
|
||||
NextValue(xfer_data, Cat(Signal(), xfer_data)),
|
||||
# Decrement xfer_bit.
|
||||
NextValue(xfer_bit, xfer_bit - 1),
|
||||
# When xfer_bit reaches 0.
|
||||
If(xfer_bit == 0,
|
||||
NextState("IDLE")
|
||||
)
|
||||
)
|
||||
)
|
||||
|
|
|
@ -11,17 +11,17 @@ from migen import *
|
|||
from litex.soc.cores.led import WS2812
|
||||
|
||||
|
||||
TEST_CLK_FREQS = (20e6, 16e6, 15e6, 10e6)
|
||||
|
||||
|
||||
class TestWS2812(unittest.TestCase):
|
||||
def generator(self, dut, led_signal, led_data, sys_clk_freq, iterations):
|
||||
error_margin = 0.15e-6 # defined in datasheet
|
||||
test_clk_freqs = [75e6, 50e6, 25e6]
|
||||
|
||||
# cap on how long a sequence will be evaluated
|
||||
def generator(self, dut, led_signal, led_data, sys_clk_freq, iterations):
|
||||
# Error Margin from WS2812 datasheet.
|
||||
error_margin = 150e-9
|
||||
|
||||
# Cap on how long a sequence will be evaluated.
|
||||
max_cycles_per_seq = int(dut.trst * sys_clk_freq * 2)
|
||||
|
||||
# initial reset
|
||||
# Verify initial reset.
|
||||
rst_cycles = 0
|
||||
for _ in range(max_cycles_per_seq):
|
||||
if (yield led_signal) != 0:
|
||||
|
@ -31,16 +31,21 @@ class TestWS2812(unittest.TestCase):
|
|||
rst_time = rst_cycles / sys_clk_freq
|
||||
assert rst_time >= dut.trst
|
||||
|
||||
# Verify generated data pulses.
|
||||
length = len(led_data)
|
||||
for _ in range(iterations):
|
||||
for i_num, num in enumerate(led_data, start = 1):
|
||||
for idx_bit, bit in enumerate(TestWS2812.to_bits(num), start = 1):
|
||||
exp_high, exp_low = (dut.t0h, dut.t0l) if bit == 0 else (dut.t1h, dut.t1l)
|
||||
for i_num, num in enumerate(led_data, start=1):
|
||||
for idx_bit, bit in enumerate(TestWS2812.to_bits(num), start=1):
|
||||
exp_high, exp_low = {
|
||||
0 : (dut.t0h, dut.t0l),
|
||||
1 : (dut.t1h, dut.t1l)
|
||||
}[bit]
|
||||
|
||||
# end of chain reset
|
||||
# On end of chain, add reset time to exp_low
|
||||
if i_num == length and idx_bit == 24:
|
||||
exp_low += dut.trst
|
||||
|
||||
# Verify high cycle.
|
||||
high_cycles = 0
|
||||
for _ in range(max_cycles_per_seq):
|
||||
if (yield led_signal) != 1:
|
||||
|
@ -51,6 +56,7 @@ class TestWS2812(unittest.TestCase):
|
|||
assert high_time >= exp_high - error_margin
|
||||
assert high_time <= exp_high + error_margin
|
||||
|
||||
# Verify low cycle.
|
||||
low_cycles = 0
|
||||
for _ in range(max_cycles_per_seq):
|
||||
if (yield led_signal) != 0:
|
||||
|
@ -61,23 +67,21 @@ class TestWS2812(unittest.TestCase):
|
|||
assert low_time >= exp_low - error_margin
|
||||
assert low_time <= exp_low + error_margin
|
||||
|
||||
|
||||
def to_bits(num, length = 24):
|
||||
return ( int(x) for x in bin(num)[2:].zfill(length) )
|
||||
|
||||
|
||||
def run_test(self, hardware_revision, sys_clk_freq):
|
||||
def run_test(self, revision, sys_clk_freq):
|
||||
led_signal = Signal()
|
||||
led_data = [ 0x100000, 0x200000, 0x300000, 0x400000, 0x500000, 0x600000, 0x700000, 0x800000, 0x900000 ]
|
||||
iterations = 3
|
||||
dut = WS2812(led_signal, len(led_data), sys_clk_freq, hardware_revision = hardware_revision, test_data = led_data)
|
||||
run_simulation(dut, self.generator(dut, led_signal, led_data, sys_clk_freq, iterations))
|
||||
|
||||
led_data = [0x100000, 0x200000, 0x300000, 0x400000, 0x500000, 0x600000, 0x700000, 0x800000, 0x900000]
|
||||
iterations = 2
|
||||
dut = WS2812(led_signal, len(led_data), sys_clk_freq, revision=revision, init=led_data)
|
||||
run_simulation(dut, self.generator(dut, led_signal, led_data, sys_clk_freq, iterations), vcd_name="sim.vcd")
|
||||
|
||||
def test_WS2812_old(self):
|
||||
for sys_clk_freq in TEST_CLK_FREQS:
|
||||
for sys_clk_freq in self.test_clk_freqs:
|
||||
self.run_test("old", sys_clk_freq)
|
||||
|
||||
def test_WS2812_new(self):
|
||||
for sys_clk_freq in TEST_CLK_FREQS:
|
||||
for sys_clk_freq in self.test_clk_freqs:
|
||||
self.run_test("new", sys_clk_freq)
|
Loading…
Reference in a new issue