soc/cores: add ECC (Error Correcting Code)

Hamming codes with additional parity (SECDED):
- Single Error Correction
- Double Error Detection
This commit is contained in:
Florent Kermarrec 2019-07-13 11:44:29 +02:00
parent 7dbddb3a56
commit ee8fec10ff
2 changed files with 255 additions and 0 deletions

155
litex/soc/cores/ecc.py Normal file
View file

@ -0,0 +1,155 @@
# This file is Copyright (c) 2018-2019 Florent Kermarrec <florent@enjoy-digital.fr>
# License: BSD
"""
Error Correcting Code
Hamming codes with additional parity (SECDED):
- Single Error Correction
- Double Error Detection
"""
from functools import reduce
from operator import xor
from migen import *
def compute_m_n(k):
m = 1
while (2**m < (m + k + 1)):
m = m + 1;
n = m + k
return m, n
def compute_syndrome_positions(m):
r = []
i = 1
while i <= m:
r.append(i)
i = i << 1
return r
def compute_data_positions(m):
r = []
e = compute_syndrome_positions(m)
for i in range(1, m + 1):
if not i in e:
r.append(i)
return r
def compute_cover_positions(m, p):
r = []
i = p
while i <= m:
for j in range(min(p, m - i + 1)):
r.append(i + j)
i += 2*p
return r
class SECDED:
def place_data(self, data, codeword):
d_pos = compute_data_positions(len(codeword))
for i, d in enumerate(d_pos):
self.comb += codeword[d-1].eq(data[i])
def extract_data(self, codeword, data):
d_pos = compute_data_positions(len(codeword))
for i, d in enumerate(d_pos):
self.comb += data[i].eq(codeword[d-1])
def compute_syndrome(self, codeword, syndrome):
p_pos = compute_syndrome_positions(len(codeword))
for i, p in enumerate(p_pos):
pn = Signal()
c_pos = compute_cover_positions(len(codeword), 2**i)
for c in c_pos:
new_pn = Signal()
self.comb += new_pn.eq(pn ^ codeword[c-1])
pn = new_pn
self.comb += syndrome[i].eq(pn)
def place_syndrome(self, syndrome, codeword):
p_pos = compute_syndrome_positions(len(codeword))
for i, p in enumerate(p_pos):
self.comb += codeword[p-1].eq(syndrome[i])
def compute_parity(self, codeword, parity):
self.comb += parity.eq(reduce(xor,
[codeword[i] for i in range(len(codeword))]))
class ECCEncoder(SECDED, Module):
def __init__(self, k):
m, n = compute_m_n(k)
self.i = i = Signal(k)
self.o = o = Signal(n + 1)
# # #
syndrome = Signal(m)
parity = Signal()
codeword_d = Signal(n)
codeword_d_p = Signal(n)
codeword = Signal(n + 1)
# place data bits in codeword
self.place_data(i, codeword_d)
# compute and place syndrome bits
self.compute_syndrome(codeword_d, syndrome)
self.comb += codeword_d_p.eq(codeword_d)
self.place_syndrome(syndrome, codeword_d_p)
# compute parity
self.compute_parity(codeword_d_p, parity)
# output codeword + parity
self.comb += o.eq(Cat(parity, codeword_d_p))
class ECCDecoder(SECDED, Module):
def __init__(self, k):
m, n = compute_m_n(k)
self.enable = Signal()
self.i = i = Signal(n + 1)
self.o = o = Signal(k)
self.sec = sec = Signal()
self.ded = ded = Signal()
# # #
syndrome = Signal(m)
parity = Signal()
codeword = Signal(n)
codeword_c = Signal(n)
# input codeword + parity
self.compute_parity(i, parity)
self.comb += codeword.eq(i[1:])
# compute_syndrome
self.compute_syndrome(codeword, syndrome)
self.comb += If(~self.enable, syndrome.eq(0))
# locate/correct codeword error bit if any and flip it
cases = {}
cases["default"] = codeword_c.eq(codeword)
for i in range(1, 2**len(syndrome)):
cases[i] = codeword_c.eq(codeword ^ (1<<(i-1)))
self.comb += Case(syndrome, cases)
# extract data / status
self.extract_data(codeword_c, o)
self.comb += [
If(syndrome != 0,
# double error detected
If(~parity,
ded.eq(1)
# single error corrected
).Else(
sec.eq(1)
)
)
]

100
test/test_ecc.py Normal file
View file

@ -0,0 +1,100 @@
# This file is Copyright (c) 2018-2019 Florent Kermarrec <florent@enjoy-digital.fr>
# License: BSD
import unittest
import random
from migen import *
from litedram.common import *
from litedram.frontend.ecc import *
from litex.gen.sim import *
class TestECC(unittest.TestCase):
def test_m_n(self):
m, n = compute_m_n(15)
self.assertEqual(m, 5)
self.assertEqual(n, 20)
def test_syndrome_positions(self):
p_pos = compute_syndrome_positions(20)
p_pos_ref = [1, 2, 4, 8, 16]
self.assertEqual(p_pos, p_pos_ref)
def test_data_positions(self):
d_pos = compute_data_positions(20)
d_pos_ref = [3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20]
self.assertEqual(d_pos, d_pos_ref)
def test_cover_positions(self):
c_pos_ref = {
0 : [1, 3, 5, 7, 9, 11, 13, 15, 17, 19],
1 : [2, 3, 6, 7, 10, 11, 14, 15, 18, 19],
2 : [4, 5, 6, 7, 12, 13, 14, 15, 20],
3 : [8, 9, 10, 11, 12, 13, 14, 15],
4 : [16, 17, 18, 19, 20]
}
for i in range(5):
c_pos = compute_cover_positions(20, 2**i)
self.assertEqual(c_pos, c_pos_ref[i])
def test_ecc(self, k=15):
class DUT(Module):
def __init__(self, k):
m, n = compute_m_n(k)
self.flip = Signal(n + 1)
# # #
self.submodules.encoder = ECCEncoder(k)
self.submodules.decoder = ECCDecoder(k)
self.comb += self.decoder.i.eq(self.encoder.o ^ self.flip)
def generator(dut, k, nvalues, nerrors):
dut.errors = 0
prng = random.Random(42)
yield dut.decoder.enable.eq(1)
for i in range(nvalues):
data = prng.randrange(2**k-1)
yield dut.encoder.i.eq(data)
# FIXME: error when fliping parity bit
if nerrors == 1:
flip_bit1 = (prng.randrange(len(dut.flip)-2) + 1)
yield dut.flip.eq(1<<flip_bit1)
elif nerrors == 2:
flip_bit1 = (prng.randrange(len(dut.flip)-2) + 1)
flip_bit2 = flip_bit1
while flip_bit2 == flip_bit1:
flip_bit2 = (prng.randrange(len(dut.flip)-2) + 1)
yield dut.flip.eq((1<<flip_bit1) | (1<<flip_bit2))
yield
# if less than 2 errors, check data
if nerrors < 2:
if (yield dut.decoder.o) != data:
dut.errors += 1
# if 0 error, verify sec == 0 / ded == 0
if nerrors == 0:
if (yield dut.decoder.sec) != 0:
dut.errors += 1
if (yield dut.decoder.ded) != 0:
dut.errors += 1
# if 1 error, verify sec == 1 / dec == 0
elif nerrors == 1:
if (yield dut.decoder.sec) != 1:
dut.errors += 1
if (yield dut.decoder.ded) != 0:
dut.errors += 1
# if 2 errors, verify sec == 0 / ded == 1
elif nerrors == 2:
if (yield dut.decoder.sec) != 0:
dut.errors += 1
if (yield dut.decoder.ded) != 1:
dut.errors += 1
for i in range(3):
dut = DUT(k)
run_simulation(dut, generator(dut, k, 128, i))
self.assertEqual(dut.errors, 0)