Minicon: small SDRAM controller

This commit is contained in:
Yann Sionneau 2014-10-31 23:36:06 +01:00 committed by Sebastien Bourdeauducq
parent 5202f89db1
commit f33b285af1
3 changed files with 433 additions and 15 deletions

View File

@ -9,6 +9,7 @@ from migen.bus import wishbone, csr, lasmibus, dfi
from migen.bus import wishbone2lasmi, wishbone2csr
from misoclib import lm32, mor1kx, uart, dfii, lasmicon, identifier, timer, memtest
from misoclib.lasmicon.minicon import Minicon
class GenSoC(Module):
csr_base = 0xe0000000
@ -141,9 +142,10 @@ class SDRAMSoC(GenSoC):
}
csr_map.update(GenSoC.csr_map)
def __init__(self, platform, clk_freq, cpu_reset_address, with_memtest=False, sram_size=4096, l2_size=8192, with_uart=True, **kwargs):
def __init__(self, platform, clk_freq, cpu_reset_address, with_memtest=False, sram_size=4096, l2_size=8192, with_uart=True, ramcon_type="lasmicon", **kwargs):
GenSoC.__init__(self, platform, clk_freq, cpu_reset_address, sram_size, l2_size, with_uart, **kwargs)
self.with_memtest = with_memtest
self.ramcon_type = ramcon_type
self._sdram_phy_registered = False
def register_sdram_phy(self, phy_dfi, phy_settings, sdram_geom, sdram_timing):
@ -156,6 +158,7 @@ class SDRAMSoC(GenSoC):
phy_settings.dfi_d, phy_settings.nphases)
self.submodules.dficon0 = dfi.Interconnect(self.dfii.master, phy_dfi)
if self.ramcon_type == "lasmicon":
# LASMI
self.submodules.lasmicon = lasmicon.LASMIcon(phy_settings, sdram_geom, sdram_timing)
self.submodules.dficon1 = dfi.Interconnect(self.lasmicon.dfi, self.dfii.slave)
@ -171,6 +174,26 @@ class SDRAMSoC(GenSoC):
self.add_wb_slave(lambda a: a[27:29] == 2, self.wishbone2lasmi.wishbone)
self.add_cpu_memory_region("sdram", 0x40000000,
2**self.lasmicon.lasmic.aw*self.lasmicon.lasmic.dw*self.lasmicon.lasmic.nbanks//8)
elif self.ramcon_type == "minicon":
rdphase = phy_settings.rdphase
self.submodules.minicon = sdramcon = Minicon(phy_settings, sdram_geom, sdram_timing)
self.submodules.dficon1 = dfi.Interconnect(sdramcon.dfi, self.dfii.slave)
sdram_width = flen(sdramcon.bus.dat_r)
if (sdram_width == 32):
self.add_wb_slave(lambda a: a[27:29] == 2, sdramcon.bus)
elif (sdram_width < 32):
self.submodules.dc = dc = wishbone.DownConverter(32, sdram_width)
self.submodules.intercon = wishbone.InterconnectPointToPoint(dc.wishbone_o, sdramcon.bus)
self.add_wb_slave(lambda a: a[27:29] == 2, dc.wishbone_i)
else:
raise NotImplementedError("Unsupported SDRAM width of {} > 32".format(sdram_width))
# map SDRAM at 0x40000000 (shadow @0xc0000000)
self.add_cpu_memory_region("sdram", 0x40000000,
2**(sdram_geom.bank_a+sdram_geom.row_a+sdram_geom.col_a)*sdram_width//8)
else:
raise ValueError("Unsupported SDRAM controller type: {}".format(self.ramcon_type))
def do_finalize(self):
if not self._sdram_phy_registered:

203
misoclib/lasmicon/minicon.py Executable file
View File

@ -0,0 +1,203 @@
from migen.fhdl.std import *
from migen.bus import wishbone
from migen.bus import dfi as dfibus
from migen.genlib.fsm import FSM, NextState
class _AddressSlicer:
def __init__(self, col_a, bank_a, row_a, address_align):
self.col_a = col_a
self.bank_a = bank_a
self.row_a = row_a
self.max_a = col_a + row_a + bank_a
self.address_align = address_align
def row(self, address):
split = self.bank_a + self.col_a
if isinstance(address, int):
return address >> split
else:
return address[split:self.max_a]
def bank(self, address):
mask = 2**(self.bank_a + self.col_a) - 1
shift = self.col_a
if isinstance(address, int):
return (address & mask) >> shift
else:
return address[self.col_a:self.col_a+self.bank_a]
def col(self, address):
split = self.col_a
if isinstance(address, int):
return (address & (2**split - 1)) << self.address_align
else:
return Cat(Replicate(0, self.address_align), address[:split])
class Minicon(Module):
def __init__(self, phy_settings, geom_settings, timing_settings):
if phy_settings.memtype in ["SDR"]:
burst_length = phy_settings.nphases*1 # command multiplication*SDR
elif phy_settings.memtype in ["DDR", "LPDDR", "DDR2", "DDR3"]:
burst_length = phy_settings.nphases*2 # command multiplication*DDR
address_align = log2_int(burst_length)
nbanks = range(2**geom_settings.bank_a)
A10_ENABLED = 0
COLUMN = 1
ROW = 2
rdphase = phy_settings.rdphase
wrphase = phy_settings.wrphase
rdcmdphase = phy_settings.rdcmdphase
wrcmdphase = phy_settings.wrcmdphase
self.dfi = dfi = dfibus.Interface(geom_settings.mux_a,
geom_settings.bank_a,
phy_settings.dfi_d,
phy_settings.nphases)
self.bus = bus = wishbone.Interface(data_width=phy_settings.nphases*flen(dfi.phases[rdphase].rddata))
slicer = _AddressSlicer(geom_settings.col_a, geom_settings.bank_a, geom_settings.row_a, address_align)
req_addr = Signal(geom_settings.col_a + geom_settings.bank_a + geom_settings.row_a)
refresh_req = Signal()
refresh_ack = Signal()
wb_access = Signal()
refresh_counter = Signal(max=timing_settings.tREFI+1)
hit = Signal()
row_open = Signal()
row_closeall = Signal()
addr_sel = Signal(max=3, reset=A10_ENABLED)
has_curbank_openrow = Signal()
cl_counter = Signal(max=phy_settings.cl+1)
# Extra bit means row is active when asserted
self.openrow = openrow = Array(Signal(geom_settings.row_a + 1) for b in nbanks)
self.comb += [
hit.eq(openrow[slicer.bank(bus.adr)] == Cat(slicer.row(bus.adr), 1)),
has_curbank_openrow.eq(openrow[slicer.bank(bus.adr)][-1]),
wb_access.eq(bus.stb & bus.cyc),
bus.dat_r.eq(Cat([phase.rddata for phase in dfi.phases])),
Cat([phase.wrdata for phase in dfi.phases]).eq(bus.dat_w),
Cat([phase.wrdata_mask for phase in dfi.phases]).eq(~bus.sel),
]
for phase in dfi.phases:
self.comb += [
phase.cke.eq(1),
phase.address.eq(Array([2**10, slicer.col(bus.adr), slicer.row(bus.adr)])[addr_sel]),
If(wb_access,
phase.bank.eq(slicer.bank(bus.adr))
)
]
phase.cs_n.reset = 0
phase.ras_n.reset = 1
phase.cas_n.reset = 1
phase.we_n.reset = 1
for b in nbanks:
self.sync += [
If(row_open & (b == slicer.bank(bus.adr)),
openrow[b].eq(Cat(slicer.row(bus.adr), 1)),
),
If(row_closeall,
openrow[b][-1].eq(0)
)
]
self.sync += [
If(refresh_ack,
refresh_req.eq(0)
),
If(refresh_counter == 0,
refresh_counter.eq(timing_settings.tREFI),
refresh_req.eq(1)
).Else(
refresh_counter.eq(refresh_counter - 1)
)
]
fsm = FSM()
self.submodules += fsm
fsm.act("IDLE",
If(refresh_req,
NextState("PRECHARGEALL")
).Elif(wb_access,
If(hit & bus.we,
NextState("WRITE"),
),
If(hit & ~bus.we,
NextState("READ"),
),
If(has_curbank_openrow & ~hit,
NextState("PRECHARGE")
),
If(~has_curbank_openrow,
NextState("ACTIVATE")
),
)
)
fsm.act("READ",
# We output Column bits at address pins so that A10 is 0
# to disable row Auto-Precharge
dfi.phases[rdcmdphase].ras_n.eq(1),
dfi.phases[rdcmdphase].cas_n.eq(0),
dfi.phases[rdcmdphase].we_n.eq(1),
dfi.phases[rdphase].rddata_en.eq(1),
addr_sel.eq(COLUMN),
NextState("READ-WAIT-ACK"),
)
fsm.act("READ-WAIT-ACK",
If(dfi.phases[rdphase].rddata_valid,
NextState("IDLE"),
bus.ack.eq(1)
).Else(
NextState("READ-WAIT-ACK")
)
)
fsm.act("WRITE",
dfi.phases[wrcmdphase].ras_n.eq(1),
dfi.phases[wrcmdphase].cas_n.eq(0),
dfi.phases[wrcmdphase].we_n.eq(0),
dfi.phases[wrphase].wrdata_en.eq(1),
addr_sel.eq(COLUMN),
bus.ack.eq(1),
NextState("IDLE")
)
fsm.act("PRECHARGEALL",
row_closeall.eq(1),
dfi.phases[rdphase].ras_n.eq(0),
dfi.phases[rdphase].cas_n.eq(1),
dfi.phases[rdphase].we_n.eq(0),
addr_sel.eq(A10_ENABLED),
NextState("PRE-REFRESH")
)
fsm.act("PRECHARGE",
# Notes:
# 1. we are presenting the column address so that A10 is low
# 2. since we always go to the ACTIVATE state, we do not need
# to assert row_close because it will be reopen right after.
NextState("TRP"),
addr_sel.eq(COLUMN),
dfi.phases[rdphase].ras_n.eq(0),
dfi.phases[rdphase].cas_n.eq(1),
dfi.phases[rdphase].we_n.eq(0)
)
fsm.act("ACTIVATE",
row_open.eq(1),
NextState("TRCD"),
dfi.phases[rdphase].ras_n.eq(0),
dfi.phases[rdphase].cas_n.eq(1),
dfi.phases[rdphase].we_n.eq(1),
addr_sel.eq(ROW)
)
fsm.act("REFRESH",
refresh_ack.eq(1),
dfi.phases[rdphase].ras_n.eq(0),
dfi.phases[rdphase].cas_n.eq(0),
dfi.phases[rdphase].we_n.eq(1),
NextState("POST-REFRESH")
)
fsm.delayed_enter("TRP", "ACTIVATE", timing_settings.tRP-1)
fsm.delayed_enter("PRE-REFRESH", "REFRESH", timing_settings.tRP-1)
fsm.delayed_enter("TRCD", "IDLE", timing_settings.tRCD-1)
fsm.delayed_enter("POST-REFRESH", "IDLE", timing_settings.tRFC-1)

192
misoclib/lasmicon/minicontb.py Executable file
View File

@ -0,0 +1,192 @@
from migen.fhdl.std import *
from migen.bus.transactions import TRead, TWrite
from migen.bus import wishbone
from migen.sim.generic import Simulator
from migen.sim import icarus
from mibuild.platforms import papilio_pro as board
from misoclib import lasmicon
from misoclib.lasmicon.minicon import Minicon
from misoclib.sdramphy import gensdrphy
from itertools import chain
from os.path import isfile
import sys
clk_freq = 80000000
from math import ceil
def ns(t, margin=True):
clk_period_ns = 1000000000/clk_freq
if margin:
t += clk_period_ns/2
return ceil(t/clk_period_ns)
class MiniconTB(Module):
def __init__(self, sdrphy, dfi, sdram_geom, sdram_timing, pads, sdram_clk):
self.clk_freq = 80000000
phy_settings = sdrphy.phy_settings
rdphase = phy_settings.rdphase
self.submodules.slave = Minicon(phy_settings, sdram_geom, sdram_timing)
self.submodules.tap = wishbone.Tap(self.slave.bus)
self.submodules.dc = dc = wishbone.DownConverter(32, phy_settings.nphases*flen(dfi.phases[rdphase].rddata))
self.submodules.master = wishbone.Initiator(self.genxfers(), bus=dc.wishbone_i)
self.submodules.intercon = wishbone.InterconnectPointToPoint(dc.wishbone_o, self.slave.bus)
self.submodules.sdrphy = self.sdrphy = sdrphy
self.dfi = dfi
self.pads = pads
self.specials += Instance("mt48lc4m16a2",
io_Dq=pads.dq,
i_Addr=pads.a,
i_Ba=pads.ba,
i_Clk=ClockSignal(),
i_Cke=pads.cke,
i_Cs_n=pads.cs_n,
i_Ras_n=pads.ras_n,
i_Cas_n=pads.cas_n,
i_We_n=pads.we_n,
i_Dqm=pads.dm
)
def genxfers(self):
cycle = 0
for a in chain(range(4),range(256,260),range(1024,1028)):
t = TRead(a)
yield t
print("read {} in {} cycles".format(t.data, t.latency))
for a in chain(range(4),range(256,260),range(1024,1028),range(4096,4100)):
t = TWrite(a, 0xaa55aa55+cycle)
cycle += 1
yield t
print("read {} in {} cycles".format(t.data, t.latency))
for a in chain(range(4),range(256,260),range(1024,1028),range(4096,4100)):
t = TRead(a)
yield t
print("read {} in {} cycles".format(t.data, t.latency))
def gen_simulation(self, selfp):
dfi = selfp.dfi
phy = self.sdrphy
rdphase = phy.phy_settings.rdphase
cycle = 0
while True:
yield
class MyTopLevel:
def __init__(self, vcd_name=None, vcd_level=1,
top_name="top", dut_type="dut", dut_name="dut",
cd_name="sys", clk_period=10):
self.vcd_name = vcd_name
self.vcd_level = vcd_level
self.top_name = top_name
self.dut_type = dut_type
self.dut_name = dut_name
self._cd_name = cd_name
self._clk_period = clk_period
cd = ClockDomain(self._cd_name)
cd_ps = ClockDomain("sys_ps")
self.clock_domains = [cd, cd_ps]
self.ios = {cd.clk, cd.rst, cd_ps.clk}
def get(self, sockaddr):
template1 = """`timescale 1ns / 1ps
module {top_name}();
reg {clk_name};
reg {rst_name};
reg sys_ps_clk;
initial begin
{rst_name} <= 1'b1;
@(posedge {clk_name});
{rst_name} <= 1'b0;
end
always begin
{clk_name} <= 1'b0;
#{hclk_period};
{clk_name} <= 1'b1;
#{hclk_period};
end
always @(posedge {clk_name} or negedge {clk_name})
sys_ps_clk <= #({hclk_period}*2-3) {clk_name};
{dut_type} {dut_name}(
.{rst_name}({rst_name}),
.{clk_name}({clk_name}),
.sys_ps_clk(sys_ps_clk)
);
initial $migensim_connect("{sockaddr}");
always @(posedge {clk_name}) $migensim_tick;
"""
template2 = """
initial begin
$dumpfile("{vcd_name}");
$dumpvars({vcd_level}, {dut_name});
end
"""
r = template1.format(top_name=self.top_name,
dut_type=self.dut_type,
dut_name=self.dut_name,
clk_name=self._cd_name + "_clk",
rst_name=self._cd_name + "_rst",
hclk_period=str(self._clk_period/2),
sockaddr=sockaddr)
if self.vcd_name is not None:
r += template2.format(vcd_name=self.vcd_name,
vcd_level=str(self.vcd_level),
dut_name=self.dut_name)
r += "\nendmodule"
return r
if __name__ == "__main__":
plat = board.Platform()
sdram_geom = lasmicon.GeomSettings(
bank_a=2,
row_a=12,
col_a=8
)
sdram_timing = lasmicon.TimingSettings(
tRP=ns(15),
tRCD=ns(15),
tWR=ns(14),
tWTR=2,
tREFI=ns(64*1000*1000/4096, False),
tRFC=ns(66),
req_queue_size=8,
read_time=32,
write_time=16
)
sdram_pads = plat.request("sdram")
sdram_clk = plat.request("sdram_clock")
sdrphy = gensdrphy.GENSDRPHY(sdram_pads)
# This sets CL to 2 during LMR done on 1st cycle
sdram_pads.a.reset = 1<<5
s = MiniconTB(sdrphy, sdrphy.dfi, sdram_geom, sdram_timing, pads=sdram_pads, sdram_clk=sdram_clk)
extra_files = [ "sdram_model/mt48lc4m16a2.v" ]
if not isfile(extra_files[0]):
print("ERROR: You need to download Micron Verilog simulation model for MT48LC4M16A2 and put it in sdram_model/mt48lc4m16a2.v")
print("File can be downloaded from this URL: http://www.micron.com/-/media/documents/products/sim%20model/dram/dram/4054mt48lc4m16a2.zip")
sys.exit(1)
with Simulator(s, MyTopLevel("top.vcd", clk_period=int(1/0.08)), icarus.Runner(extra_files=extra_files, keep_files=True)) as sim:
sim.run(5000)