interconnect: add bus/bank components from Migen

This commit is contained in:
Sebastien Bourdeauducq 2015-09-24 20:48:18 +08:00
parent ecdc4101b4
commit f69674e89c
8 changed files with 1191 additions and 0 deletions

View file

147
misoc/interconnect/csr.py Normal file
View file

@ -0,0 +1,147 @@
from migen.util.misc import xdir
from migen.fhdl.std import *
from migen.fhdl.tracer import get_obj_var_name
class _CSRBase(HUID):
def __init__(self, size, name):
HUID.__init__(self)
self.name = get_obj_var_name(name)
if self.name is None:
raise ValueError("Cannot extract CSR name from code, need to specify.")
self.size = size
class CSR(_CSRBase):
def __init__(self, size=1, name=None):
_CSRBase.__init__(self, size, name)
self.re = Signal(name=self.name + "_re")
self.r = Signal(self.size, name=self.name + "_r")
self.w = Signal(self.size, name=self.name + "_w")
class _CompoundCSR(_CSRBase, Module):
def __init__(self, size, name):
_CSRBase.__init__(self, size, name)
self.simple_csrs = []
def get_simple_csrs(self):
if not self.finalized:
raise FinalizeError
return self.simple_csrs
def do_finalize(self, busword):
raise NotImplementedError
class CSRStatus(_CompoundCSR):
def __init__(self, size=1, reset=0, name=None):
_CompoundCSR.__init__(self, size, name)
self.status = Signal(self.size, reset=reset)
def do_finalize(self, busword):
nwords = (self.size + busword - 1)//busword
for i in reversed(range(nwords)):
nbits = min(self.size - i*busword, busword)
sc = CSR(nbits, self.name + str(i) if nwords > 1 else self.name)
self.comb += sc.w.eq(self.status[i*busword:i*busword+nbits])
self.simple_csrs.append(sc)
class CSRStorage(_CompoundCSR):
def __init__(self, size=1, reset=0, atomic_write=False, write_from_dev=False, alignment_bits=0, name=None):
_CompoundCSR.__init__(self, size, name)
self.alignment_bits = alignment_bits
self.storage_full = Signal(self.size, reset=reset)
self.storage = Signal(self.size - self.alignment_bits, reset=reset >> alignment_bits)
self.comb += self.storage.eq(self.storage_full[self.alignment_bits:])
self.atomic_write = atomic_write
self.re = Signal()
if write_from_dev:
self.we = Signal()
self.dat_w = Signal(self.size - self.alignment_bits)
self.sync += If(self.we, self.storage_full.eq(self.dat_w << self.alignment_bits))
def do_finalize(self, busword):
nwords = (self.size + busword - 1)//busword
if nwords > 1 and self.atomic_write:
backstore = Signal(self.size - busword, name=self.name + "_backstore")
for i in reversed(range(nwords)):
nbits = min(self.size - i*busword, busword)
sc = CSR(nbits, self.name + str(i) if nwords else self.name)
self.simple_csrs.append(sc)
lo = i*busword
hi = lo+nbits
# read
if lo >= self.alignment_bits:
self.comb += sc.w.eq(self.storage_full[lo:hi])
elif hi > self.alignment_bits:
self.comb += sc.w.eq(Cat(Replicate(0, hi - self.alignment_bits),
self.storage_full[self.alignment_bits:hi]))
else:
self.comb += sc.w.eq(0)
# write
if nwords > 1 and self.atomic_write:
if i:
self.sync += If(sc.re, backstore[lo-busword:hi-busword].eq(sc.r))
else:
self.sync += If(sc.re, self.storage_full.eq(Cat(sc.r, backstore)))
else:
self.sync += If(sc.re, self.storage_full[lo:hi].eq(sc.r))
self.sync += self.re.eq(sc.re)
def csrprefix(prefix, csrs, done):
for csr in csrs:
if csr.huid not in done:
csr.name = prefix + csr.name
done.add(csr.huid)
def memprefix(prefix, memories, done):
for memory in memories:
if memory.huid not in done:
memory.name_override = prefix + memory.name_override
done.add(memory.huid)
def _make_gatherer(method, cls, prefix_cb):
def gatherer(self):
try:
exclude = self.autocsr_exclude
except AttributeError:
exclude = {}
try:
prefixed = self.__prefixed
except AttributeError:
prefixed = self.__prefixed = set()
r = []
for k, v in xdir(self, True):
if k not in exclude:
if isinstance(v, cls):
r.append(v)
elif hasattr(v, method) and callable(getattr(v, method)):
items = getattr(v, method)()
prefix_cb(k + "_", items, prefixed)
r += items
return sorted(r, key=lambda x: x.huid)
return gatherer
class AutoCSR:
get_memories = _make_gatherer("get_memories", Memory, memprefix)
get_csrs = _make_gatherer("get_csrs", _CSRBase, csrprefix)
class GenericBank(Module):
def __init__(self, description, busword):
# Turn description into simple CSRs and claim ownership of compound CSR modules
self.simple_csrs = []
for c in description:
if isinstance(c, CSR):
self.simple_csrs.append(c)
else:
c.finalize(busword)
self.simple_csrs += c.get_simple_csrs()
self.submodules += c
self.decode_bits = bits_for(len(self.simple_csrs)-1)

View file

@ -0,0 +1,215 @@
from migen.fhdl.std import *
from migen.bus.transactions import *
from migen.bank.description import CSRStorage
from migen.genlib.record import *
from migen.genlib.misc import chooser
from misoc.interconnect import csr
_layout = [
("adr", "address_width", DIR_M_TO_S),
("we", 1, DIR_M_TO_S),
("dat_w", "data_width", DIR_M_TO_S),
("dat_r", "data_width", DIR_S_TO_M)
]
class Interface(Record):
def __init__(self, data_width=8, address_width=14):
Record.__init__(self, set_layout_parameters(_layout,
data_width=data_width, address_width=address_width))
class Interconnect(Module):
def __init__(self, master, slaves):
self.comb += master.connect(*slaves)
class Initiator(Module):
def __init__(self, generator, bus=None):
self.generator = generator
if bus is None:
bus = Interface()
self.bus = bus
self.transaction = None
self.read_data_ready = False
self.done = False
def do_simulation(self, selfp):
if not self.done:
if self.transaction is not None:
if isinstance(self.transaction, TRead):
if self.read_data_ready:
self.transaction.data = selfp.bus.dat_r
self.transaction = None
self.read_data_ready = False
else:
self.read_data_ready = True
else:
selfp.bus.we = 0
self.transaction = None
if self.transaction is None:
try:
self.transaction = next(self.generator)
except StopIteration:
self.transaction = None
raise StopSimulation
if self.transaction is not None:
selfp.bus.adr = self.transaction.address
if isinstance(self.transaction, TWrite):
selfp.bus.we = 1
selfp.bus.dat_w = self.transaction.data
class SRAM(Module):
def __init__(self, mem_or_size, address, read_only=None, init=None, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
data_width = flen(self.bus.dat_w)
if isinstance(mem_or_size, Memory):
mem = mem_or_size
else:
mem = Memory(data_width, mem_or_size//(data_width//8), init=init)
csrw_per_memw = (mem.width + data_width - 1)//data_width
word_bits = log2_int(csrw_per_memw)
page_bits = log2_int((mem.depth*csrw_per_memw + 511)//512, False)
if page_bits:
self._page = CSRStorage(page_bits, name=mem.name_override + "_page")
else:
self._page = None
if read_only is None:
if hasattr(mem, "bus_read_only"):
read_only = mem.bus_read_only
else:
read_only = False
###
port = mem.get_port(write_capable=not read_only)
self.specials += mem, port
sel = Signal()
sel_r = Signal()
self.sync += sel_r.eq(sel)
self.comb += sel.eq(self.bus.adr[9:] == address)
if word_bits:
word_index = Signal(word_bits)
word_expanded = Signal(csrw_per_memw*data_width)
self.sync += word_index.eq(self.bus.adr[:word_bits])
self.comb += [
word_expanded.eq(port.dat_r),
If(sel_r,
chooser(word_expanded, word_index, self.bus.dat_r, n=csrw_per_memw, reverse=True)
)
]
if not read_only:
wregs = []
for i in range(csrw_per_memw-1):
wreg = Signal(data_width)
self.sync += If(sel & self.bus.we & (self.bus.adr[:word_bits] == i), wreg.eq(self.bus.dat_w))
wregs.append(wreg)
memword_chunks = [self.bus.dat_w] + list(reversed(wregs))
self.comb += [
port.we.eq(sel & self.bus.we & (self.bus.adr[:word_bits] == csrw_per_memw - 1)),
port.dat_w.eq(Cat(*memword_chunks))
]
else:
self.comb += If(sel_r, self.bus.dat_r.eq(port.dat_r))
if not read_only:
self.comb += [
port.we.eq(sel & self.bus.we),
port.dat_w.eq(self.bus.dat_w)
]
if self._page is None:
self.comb += port.adr.eq(self.bus.adr[word_bits:word_bits+flen(port.adr)])
else:
pv = self._page.storage
self.comb += port.adr.eq(Cat(self.bus.adr[word_bits:word_bits+flen(port.adr)-flen(pv)], pv))
def get_csrs(self):
if self._page is None:
return []
else:
return [self._page]
class CSRBank(csr.GenericBank):
def __init__(self, description, address=0, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
###
GenericBank.__init__(self, description, flen(self.bus.dat_w))
sel = Signal()
self.comb += sel.eq(self.bus.adr[9:] == address)
for i, c in enumerate(self.simple_csrs):
self.comb += [
c.r.eq(self.bus.dat_w[:c.size]),
c.re.eq(sel & \
self.bus.we & \
(self.bus.adr[:self.decode_bits] == i))
]
brcases = dict((i, self.bus.dat_r.eq(c.w)) for i, c in enumerate(self.simple_csrs))
self.sync += [
self.bus.dat_r.eq(0),
If(sel, Case(self.bus.adr[:self.decode_bits], brcases))
]
# address_map(name, memory) returns the CSR offset at which to map
# the CSR object (register bank or memory).
# If memory=None, the object is the register bank of object source.name.
# Otherwise, it is a memory object belonging to source.name.
# address_map is called exactly once for each object at each call to
# scan(), so it can have side effects.
class CSRBankArray(Module):
def __init__(self, source, address_map, *ifargs, **ifkwargs):
self.source = source
self.address_map = address_map
self.scan(ifargs, ifkwargs)
def scan(self, ifargs, ifkwargs):
self.banks = []
self.srams = []
for name, obj in xdir(self.source, True):
if hasattr(obj, "get_csrs"):
csrs = obj.get_csrs()
else:
csrs = []
if hasattr(obj, "get_memories"):
memories = obj.get_memories()
for memory in memories:
mapaddr = self.address_map(name, memory)
if mapaddr is None:
continue
sram_bus = csr.Interface(*ifargs, **ifkwargs)
mmap = csr.SRAM(memory, mapaddr, bus=sram_bus)
self.submodules += mmap
csrs += mmap.get_csrs()
self.srams.append((name, memory, mapaddr, mmap))
if csrs:
mapaddr = self.address_map(name, None)
if mapaddr is None:
continue
bank_bus = csr.Interface(*ifargs, **ifkwargs)
rmap = Bank(csrs, mapaddr, bus=bank_bus)
self.submodules += rmap
self.banks.append((name, csrs, mapaddr, rmap))
def get_rmaps(self):
return [rmap for name, csrs, mapaddr, rmap in self.banks]
def get_mmaps(self):
return [mmap for name, memory, mapaddr, mmap in self.srams]
def get_buses(self):
return [i.bus for i in self.get_rmaps() + self.get_mmaps()]

View file

@ -0,0 +1,83 @@
from migen.util.misc import xdir
from migen.fhdl.std import *
from migen.bank.description import *
from migen.genlib.misc import optree
class _EventSource(HUID):
def __init__(self):
HUID.__init__(self)
self.status = Signal() # value in the status register
self.pending = Signal() # value in the pending register + assert irq if unmasked
self.trigger = Signal() # trigger signal interface to the user design
self.clear = Signal() # clearing attempt by W1C to pending register, ignored by some event sources
# set on a positive trigger pulse
class EventSourcePulse(Module, _EventSource):
def __init__(self):
_EventSource.__init__(self)
self.comb += self.status.eq(0)
self.sync += [
If(self.clear, self.pending.eq(0)),
If(self.trigger, self.pending.eq(1))
]
# set on the falling edge of the trigger, status = trigger
class EventSourceProcess(Module, _EventSource):
def __init__(self):
_EventSource.__init__(self)
self.comb += self.status.eq(self.trigger)
old_trigger = Signal()
self.sync += [
If(self.clear, self.pending.eq(0)),
old_trigger.eq(self.trigger),
If(~self.trigger & old_trigger, self.pending.eq(1))
]
# all status set by external trigger
class EventSourceLevel(Module, _EventSource):
def __init__(self):
_EventSource.__init__(self)
self.comb += [
self.status.eq(self.trigger),
self.pending.eq(self.trigger)
]
class EventManager(Module, AutoCSR):
def __init__(self):
self.irq = Signal()
def do_finalize(self):
sources_u = [v for k, v in xdir(self, True) if isinstance(v, _EventSource)]
sources = sorted(sources_u, key=lambda x: x.huid)
n = len(sources)
self.status = CSR(n)
self.pending = CSR(n)
self.enable = CSRStorage(n)
for i, source in enumerate(sources):
self.comb += [
self.status.w[i].eq(source.status),
If(self.pending.re & self.pending.r[i], source.clear.eq(1)),
self.pending.w[i].eq(source.pending)
]
irqs = [self.pending.w[i] & self.enable.storage[i] for i in range(n)]
self.comb += self.irq.eq(optree("|", irqs))
def __setattr__(self, name, value):
object.__setattr__(self, name, value)
if isinstance(value, _EventSource):
if self.finalized:
raise FinalizeError
self.submodules += value
class SharedIRQ(Module):
def __init__(self, *event_managers):
self.irq = Signal()
self.comb += self.irq.eq(optree("|", [ev.irq for ev in event_managers]))

View file

@ -0,0 +1,718 @@
from migen.fhdl.std import *
from migen.genlib import roundrobin
from migen.genlib.record import *
from migen.genlib.misc import split, displacer, optree, chooser
from migen.genlib.misc import FlipFlop, Counter
from migen.genlib.fsm import FSM, NextState
from migen.bus.transactions import *
from misoc.interconnect import csr
_layout = [
("adr", 30, DIR_M_TO_S),
("dat_w", "data_width", DIR_M_TO_S),
("dat_r", "data_width", DIR_S_TO_M),
("sel", "sel_width", DIR_M_TO_S),
("cyc", 1, DIR_M_TO_S),
("stb", 1, DIR_M_TO_S),
("ack", 1, DIR_S_TO_M),
("we", 1, DIR_M_TO_S),
("cti", 3, DIR_M_TO_S),
("bte", 2, DIR_M_TO_S),
("err", 1, DIR_S_TO_M)
]
class Interface(Record):
def __init__(self, data_width=32):
Record.__init__(self, set_layout_parameters(_layout,
data_width=data_width,
sel_width=data_width//8))
class InterconnectPointToPoint(Module):
def __init__(self, master, slave):
self.comb += master.connect(slave)
class Arbiter(Module):
def __init__(self, masters, target):
self.submodules.rr = roundrobin.RoundRobin(len(masters))
# mux master->slave signals
for name, size, direction in _layout:
if direction == DIR_M_TO_S:
choices = Array(getattr(m, name) for m in masters)
self.comb += getattr(target, name).eq(choices[self.rr.grant])
# connect slave->master signals
for name, size, direction in _layout:
if direction == DIR_S_TO_M:
source = getattr(target, name)
for i, m in enumerate(masters):
dest = getattr(m, name)
if name == "ack" or name == "err":
self.comb += dest.eq(source & (self.rr.grant == i))
else:
self.comb += dest.eq(source)
# connect bus requests to round-robin selector
reqs = [m.cyc for m in masters]
self.comb += self.rr.request.eq(Cat(*reqs))
class Decoder(Module):
# slaves is a list of pairs:
# 0) function that takes the address signal and returns a FHDL expression
# that evaluates to 1 when the slave is selected and 0 otherwise.
# 1) wishbone.Slave reference.
# register adds flip-flops after the address comparators. Improves timing,
# but breaks Wishbone combinatorial feedback.
def __init__(self, master, slaves, register=False):
ns = len(slaves)
slave_sel = Signal(ns)
slave_sel_r = Signal(ns)
# decode slave addresses
self.comb += [slave_sel[i].eq(fun(master.adr))
for i, (fun, bus) in enumerate(slaves)]
if register:
self.sync += slave_sel_r.eq(slave_sel)
else:
self.comb += slave_sel_r.eq(slave_sel)
# connect master->slaves signals except cyc
for slave in slaves:
for name, size, direction in _layout:
if direction == DIR_M_TO_S and name != "cyc":
self.comb += getattr(slave[1], name).eq(getattr(master, name))
# combine cyc with slave selection signals
self.comb += [slave[1].cyc.eq(master.cyc & slave_sel[i])
for i, slave in enumerate(slaves)]
# generate master ack (resp. err) by ORing all slave acks (resp. errs)
self.comb += [
master.ack.eq(optree("|", [slave[1].ack for slave in slaves])),
master.err.eq(optree("|", [slave[1].err for slave in slaves]))
]
# mux (1-hot) slave data return
masked = [Replicate(slave_sel_r[i], flen(master.dat_r)) & slaves[i][1].dat_r for i in range(ns)]
self.comb += master.dat_r.eq(optree("|", masked))
class InterconnectShared(Module):
def __init__(self, masters, slaves, register=False):
shared = Interface()
self.submodules += Arbiter(masters, shared)
self.submodules += Decoder(shared, slaves, register)
class Crossbar(Module):
def __init__(self, masters, slaves, register=False):
matches, busses = zip(*slaves)
access = [[Interface() for j in slaves] for i in masters]
# decode each master into its access row
for row, master in zip(access, masters):
row = list(zip(matches, row))
self.submodules += Decoder(master, row, register)
# arbitrate each access column onto its slave
for column, bus in zip(zip(*access), busses):
self.submodules += Arbiter(column, bus)
class DownConverter(Module):
"""DownConverter
This module splits Wishbone accesses from a master interface to a smaller
slave interface.
Writes:
Writes from master are splitted N writes to the slave. Access is acked when the last
access is acked by the slave.
Reads:
Read from master are splitted in N reads to the the slave. Read datas from
the slave are cached before being presented concatenated on the last access.
TODO:
Manage err signal? (Not implemented since we generally don't use it on Migen/MiSoC modules)
"""
def __init__(self, master, slave):
dw_from = flen(master.dat_r)
dw_to = flen(slave.dat_w)
ratio = dw_from//dw_to
# # #
read = Signal()
write = Signal()
counter = Counter(max=ratio)
self.submodules += counter
counter_done = Signal()
self.comb += counter_done.eq(counter.value == ratio-1)
# Main FSM
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
counter.reset.eq(1),
If(master.stb & master.cyc,
If(master.we,
NextState("WRITE")
).Else(
NextState("READ")
)
)
)
fsm.act("WRITE",
write.eq(1),
slave.we.eq(1),
slave.cyc.eq(1),
If(master.stb & master.cyc,
slave.stb.eq(1),
If(slave.ack,
counter.ce.eq(1),
If(counter_done,
master.ack.eq(1),
NextState("IDLE")
)
)
).Elif(~master.cyc,
NextState("IDLE")
)
)
fsm.act("READ",
read.eq(1),
slave.cyc.eq(1),
If(master.stb & master.cyc,
slave.stb.eq(1),
If(slave.ack,
counter.ce.eq(1),
If(counter_done,
master.ack.eq(1),
NextState("IDLE")
)
)
).Elif(~master.cyc,
NextState("IDLE")
)
)
# Address
self.comb += [
If(counter_done,
slave.cti.eq(7) # indicate end of burst
).Else(
slave.cti.eq(2)
),
slave.adr.eq(Cat(counter.value, master.adr))
]
# Datapath
cases = {}
for i in range(ratio):
cases[i] = [
slave.sel.eq(master.sel[i*dw_to//8:(i+1)*dw_to]),
slave.dat_w.eq(master.dat_w[i*dw_to:(i+1)*dw_to])
]
self.comb += Case(counter.value, cases)
cached_data = Signal(dw_from)
self.comb += master.dat_r.eq(Cat(cached_data[dw_to:], slave.dat_r))
self.sync += \
If(read & counter.ce,
cached_data.eq(master.dat_r)
)
class UpConverter(Module):
"""UpConverter
This module up-converts wishbone accesses and bursts from a master interface
to a wider slave interface. This allows efficient use wishbone bursts.
Writes:
Wishbone writes are cached before being written to the slave. Access to
the slave is done at the end of a burst or when address reach end of burst
addressing.
Reads:
Cache is refilled only at the beginning of each burst, the subsequent
reads of a burst use the cached data.
TODO:
Manage err signal? (Not implemented since we generally don't use it on Migen/MiSoC modules)
"""
def __init__(self, master, slave):
dw_from = flen(master.dat_r)
dw_to = flen(slave.dat_w)
ratio = dw_to//dw_from
ratiobits = log2_int(ratio)
# # #
write = Signal()
evict = Signal()
refill = Signal()
read = Signal()
address = FlipFlop(30)
self.submodules += address
self.comb += address.d.eq(master.adr)
counter = Counter(max=ratio)
self.submodules += counter
counter_offset = Signal(max=ratio)
counter_done = Signal()
self.comb += [
counter_offset.eq(address.q),
counter_done.eq((counter.value + counter_offset) == ratio-1)
]
cached_data = Signal(dw_to)
cached_sel = Signal(dw_to//8)
end_of_burst = Signal()
self.comb += end_of_burst.eq(~master.cyc |
(master.stb & master.cyc & master.ack & ((master.cti == 7) | counter_done)))
need_refill = FlipFlop(reset=1)
self.submodules += need_refill
self.comb += [
need_refill.reset.eq(end_of_burst),
need_refill.d.eq(0)
]
# Main FSM
self.submodules.fsm = fsm = FSM()
fsm.act("IDLE",
counter.reset.eq(1),
If(master.stb & master.cyc,
address.ce.eq(1),
If(master.we,
NextState("WRITE")
).Else(
If(need_refill.q,
NextState("REFILL")
).Else(
NextState("READ")
)
)
)
)
fsm.act("WRITE",
If(master.stb & master.cyc,
write.eq(1),
counter.ce.eq(1),
master.ack.eq(1),
If(counter_done,
NextState("EVICT")
)
).Elif(~master.cyc,
NextState("EVICT")
)
)
fsm.act("EVICT",
evict.eq(1),
slave.stb.eq(1),
slave.we.eq(1),
slave.cyc.eq(1),
slave.dat_w.eq(cached_data),
slave.sel.eq(cached_sel),
If(slave.ack,
NextState("IDLE")
)
)
fsm.act("REFILL",
refill.eq(1),
slave.stb.eq(1),
slave.cyc.eq(1),
If(slave.ack,
need_refill.ce.eq(1),
NextState("READ")
)
)
fsm.act("READ",
read.eq(1),
If(master.stb & master.cyc,
master.ack.eq(1)
),
NextState("IDLE")
)
# Address
self.comb += [
slave.cti.eq(7), # we are not able to generate bursts since up-converting
slave.adr.eq(address.q[ratiobits:])
]
# Datapath
cached_datas = [FlipFlop(dw_from) for i in range(ratio)]
cached_sels = [FlipFlop(dw_from//8) for i in range(ratio)]
self.submodules += cached_datas, cached_sels
cases = {}
for i in range(ratio):
write_sel = Signal()
cases[i] = write_sel.eq(1)
self.comb += [
cached_sels[i].reset.eq(counter.reset),
If(write,
cached_datas[i].d.eq(master.dat_w),
).Else(
cached_datas[i].d.eq(slave.dat_r[dw_from*i:dw_from*(i+1)])
),
cached_sels[i].d.eq(master.sel),
If((write & write_sel) | refill,
cached_datas[i].ce.eq(1),
cached_sels[i].ce.eq(1)
)
]
self.comb += Case(counter.value + counter_offset, cases)
cases = {}
for i in range(ratio):
cases[i] = master.dat_r.eq(cached_datas[i].q)
self.comb += Case(address.q[:ratiobits], cases)
self.comb += [
cached_data.eq(Cat([cached_data.q for cached_data in cached_datas])),
cached_sel.eq(Cat([cached_sel.q for cached_sel in cached_sels]))
]
class Converter(Module):
"""Converter
This module is a wrapper for DownConverter and UpConverter.
It should preferably be used rather than direct instantiations
of specific converters.
"""
def __init__(self, master, slave):
self.master = master
self.slave = slave
# # #
dw_from = flen(master.dat_r)
dw_to = flen(slave.dat_r)
if dw_from > dw_to:
downconverter = DownConverter(master, slave)
self.submodules += downconverter
elif dw_from < dw_to:
upconverter = UpConverter(master, slave)
self.submodules += upconverter
else:
Record.connect(master, slave)
class Cache(Module):
"""Cache
This module is a write-back wishbone cache that can be used as a L2 cache.
Cachesize (in 32-bit words) is the size of the data store and must be a power of 2
"""
def __init__(self, cachesize, master, slave):
self.master = master
self.slave = slave
###
dw_from = flen(master.dat_r)
dw_to = flen(slave.dat_r)
if dw_to > dw_from and (dw_to % dw_from) != 0:
raise ValueError("Slave data width must be a multiple of {dw}".format(dw=dw_from))
if dw_to < dw_from and (dw_from % dw_to) != 0:
raise ValueError("Master data width must be a multiple of {dw}".format(dw=dw_to))
# Split address:
# TAG | LINE NUMBER | LINE OFFSET
offsetbits = log2_int(max(dw_to//dw_from, 1))
addressbits = flen(slave.adr) + offsetbits
linebits = log2_int(cachesize) - offsetbits
tagbits = addressbits - linebits
wordbits = log2_int(max(dw_from//dw_to, 1))
adr_offset, adr_line, adr_tag = split(master.adr, offsetbits, linebits, tagbits)
word = Signal(wordbits) if wordbits else None
# Data memory
data_mem = Memory(dw_to*2**wordbits, 2**linebits)
data_port = data_mem.get_port(write_capable=True, we_granularity=8)
self.specials += data_mem, data_port
write_from_slave = Signal()
if adr_offset is None:
adr_offset_r = None
else:
adr_offset_r = Signal(offsetbits)
self.sync += adr_offset_r.eq(adr_offset)
self.comb += [
data_port.adr.eq(adr_line),
If(write_from_slave,
displacer(slave.dat_r, word, data_port.dat_w),
displacer(Replicate(1, dw_to//8), word, data_port.we)
).Else(
data_port.dat_w.eq(Replicate(master.dat_w, max(dw_to//dw_from, 1))),
If(master.cyc & master.stb & master.we & master.ack,
displacer(master.sel, adr_offset, data_port.we, 2**offsetbits, reverse=True)
)
),
chooser(data_port.dat_r, word, slave.dat_w),
slave.sel.eq(2**(dw_to//8)-1),
chooser(data_port.dat_r, adr_offset_r, master.dat_r, reverse=True)
]
# Tag memory
tag_layout = [("tag", tagbits), ("dirty", 1)]
tag_mem = Memory(layout_len(tag_layout), 2**linebits)
tag_port = tag_mem.get_port(write_capable=True)
self.specials += tag_mem, tag_port
tag_do = Record(tag_layout)
tag_di = Record(tag_layout)
self.comb += [
tag_do.raw_bits().eq(tag_port.dat_r),
tag_port.dat_w.eq(tag_di.raw_bits())
]
self.comb += [
tag_port.adr.eq(adr_line),
tag_di.tag.eq(adr_tag)
]
if word is not None:
self.comb += slave.adr.eq(Cat(word, adr_line, tag_do.tag))
else:
self.comb += slave.adr.eq(Cat(adr_line, tag_do.tag))
# slave word computation, word_clr and word_inc will be simplified
# at synthesis when wordbits=0
word_clr = Signal()
word_inc = Signal()
if word is not None:
self.sync += \
If(word_clr,
word.eq(0),
).Elif(word_inc,
word.eq(word+1)
)
def word_is_last(word):
if word is not None:
return word == 2**wordbits-1
else:
return 1
# Control FSM
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
If(master.cyc & master.stb,
NextState("TEST_HIT")
)
)
fsm.act("TEST_HIT",
word_clr.eq(1),
If(tag_do.tag == adr_tag,
master.ack.eq(1),
If(master.we,
tag_di.dirty.eq(1),
tag_port.we.eq(1)
),
NextState("IDLE")
).Else(
If(tag_do.dirty,
NextState("EVICT")
).Else(
NextState("REFILL_WRTAG")
)
)
)
fsm.act("EVICT",
slave.stb.eq(1),
slave.cyc.eq(1),
slave.we.eq(1),
If(slave.ack,
word_inc.eq(1),
If(word_is_last(word),
NextState("REFILL_WRTAG")
)
)
)
fsm.act("REFILL_WRTAG",
# Write the tag first to set the slave address
tag_port.we.eq(1),
word_clr.eq(1),
NextState("REFILL")
)
fsm.act("REFILL",
slave.stb.eq(1),
slave.cyc.eq(1),
slave.we.eq(0),
If(slave.ack,
write_from_slave.eq(1),
word_inc.eq(1),
If(word_is_last(word),
NextState("TEST_HIT"),
).Else(
NextState("REFILL")
)
)
)
class Tap(Module):
def __init__(self, bus, handler=print):
self.bus = bus
self.handler = handler
def do_simulation(self, selfp):
if selfp.bus.ack:
assert(selfp.bus.cyc and selfp.bus.stb)
if selfp.bus.we:
transaction = TWrite(selfp.bus.adr,
selfp.bus.dat_w,
selfp.bus.sel)
else:
transaction = TRead(selfp.bus.adr,
selfp.bus.dat_r)
self.handler(transaction)
do_simulation.passive = True
class Initiator(Module):
def __init__(self, generator, bus=None):
self.generator = generator
if bus is None:
bus = Interface()
self.bus = bus
self.transaction_start = 0
self.transaction = None
def do_simulation(self, selfp):
if self.transaction is None or selfp.bus.ack:
if self.transaction is not None:
self.transaction.latency = selfp.simulator.cycle_counter - self.transaction_start - 1
if isinstance(self.transaction, TRead):
self.transaction.data = selfp.bus.dat_r
try:
self.transaction = next(self.generator)
except StopIteration:
selfp.bus.cyc = 0
selfp.bus.stb = 0
raise StopSimulation
if self.transaction is not None:
self.transaction_start = selfp.simulator.cycle_counter
selfp.bus.cyc = 1
selfp.bus.stb = 1
selfp.bus.adr = self.transaction.address
if isinstance(self.transaction, TWrite):
selfp.bus.we = 1
selfp.bus.sel = self.transaction.sel
selfp.bus.dat_w = self.transaction.data
else:
selfp.bus.we = 0
else:
selfp.bus.cyc = 0
selfp.bus.stb = 0
class TargetModel:
def read(self, address):
return 0
def write(self, address, data, sel):
pass
def can_ack(self, bus):
return True
class Target(Module):
def __init__(self, model, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
self.model = model
def do_simulation(self, selfp):
bus = selfp.bus
if not bus.ack:
if self.model.can_ack(bus) and bus.cyc and bus.stb:
if bus.we:
self.model.write(bus.adr, bus.dat_w, bus.sel)
else:
bus.dat_r = self.model.read(bus.adr)
bus.ack = 1
else:
bus.ack = 0
do_simulation.passive = True
class SRAM(Module):
def __init__(self, mem_or_size, read_only=None, init=None, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
bus_data_width = flen(self.bus.dat_r)
if isinstance(mem_or_size, Memory):
assert(mem_or_size.width <= bus_data_width)
self.mem = mem_or_size
else:
self.mem = Memory(bus_data_width, mem_or_size//(bus_data_width//8), init=init)
if read_only is None:
if hasattr(self.mem, "bus_read_only"):
read_only = self.mem.bus_read_only
else:
read_only = False
###
# memory
port = self.mem.get_port(write_capable=not read_only, we_granularity=8)
self.specials += self.mem, port
# generate write enable signal
if not read_only:
self.comb += [port.we[i].eq(self.bus.cyc & self.bus.stb & self.bus.we & self.bus.sel[i])
for i in range(4)]
# address and data
self.comb += [
port.adr.eq(self.bus.adr[:flen(port.adr)]),
self.bus.dat_r.eq(port.dat_r)
]
if not read_only:
self.comb += port.dat_w.eq(self.bus.dat_w),
# generate ack
self.sync += [
self.bus.ack.eq(0),
If(self.bus.cyc & self.bus.stb & ~self.bus.ack, self.bus.ack.eq(1))
]
class CSRBank(csr.GenericBank):
def __init__(self, description, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
###
GenericBank.__init__(self, description, flen(self.bus.dat_w))
for i, c in enumerate(self.simple_csrs):
self.comb += [
c.r.eq(self.bus.dat_w[:c.size]),
c.re.eq(self.bus.cyc & self.bus.stb & ~self.bus.ack & self.bus.we & \
(self.bus.adr[:self.decode_bits] == i))
]
brcases = dict((i, self.bus.dat_r.eq(c.w)) for i, c in enumerate(self.simple_csrs))
self.sync += [
Case(self.bus.adr[:self.decode_bits], brcases),
If(bus.ack, bus.ack.eq(0)).Elif(bus.cyc & bus.stb, bus.ack.eq(1))
]

View file

@ -0,0 +1,28 @@
from migen.fhdl.std import *
from migen.bus import wishbone
from migen.bus import csr
from migen.genlib.misc import timeline
class WB2CSR(Module):
def __init__(self, bus_wishbone=None, bus_csr=None):
if bus_wishbone is None:
bus_wishbone = wishbone.Interface()
self.wishbone = bus_wishbone
if bus_csr is None:
bus_csr = csr.Interface()
self.csr = bus_csr
###
self.sync += [
self.csr.we.eq(0),
self.csr.dat_w.eq(self.wishbone.dat_w),
self.csr.adr.eq(self.wishbone.adr),
self.wishbone.dat_r.eq(self.csr.dat_r)
]
self.sync += timeline(self.wishbone.cyc & self.wishbone.stb, [
(1, [self.csr.we.eq(self.wishbone.we)]),
(2, [self.wishbone.ack.eq(1)]),
(3, [self.wishbone.ack.eq(0)])
])