litex/test/test_axi.py

408 lines
15 KiB
Python

#
# This file is part of LiteX.
#
# Copyright (c) 2019-2022 Florent Kermarrec <florent@enjoy-digital.fr>
# SPDX-License-Identifier: BSD-2-Clause
import unittest
import random
from migen import *
from litex.gen import *
from litex.soc.interconnect.axi import *
from litex.soc.interconnect import wishbone
# Software Models ----------------------------------------------------------------------------------
class Burst:
def __init__(self, addr, type=BURST_FIXED, len=0, size=0):
self.addr = addr
self.type = type
self.len = len
self.size = size
def to_beats(self):
r = []
burst_length = self.len + 1
burst_size = 2**self.size
for i in range(burst_length):
if self.type == BURST_INCR:
offset = i*2**(self.size)
r += [Beat(self.addr + offset)]
elif self.type == BURST_WRAP:
assert burst_length in [2, 4, 8, 16]
assert (self.addr % burst_size) == 0
burst_base = self.addr - self.addr % (burst_length * burst_size)
burst_offset = self.addr % (burst_length * burst_size)
burst_addr = burst_base + (burst_offset + i*burst_size) % (burst_length * burst_size)
#print("0x{:08x}".format(burst_addr))
r += [Beat(burst_addr)]
else:
r += [Beat(self.addr)]
return r
class Beat:
def __init__(self, addr):
self.addr = addr
class Access(Burst):
def __init__(self, addr, data, id, **kwargs):
Burst.__init__(self, addr, **kwargs)
self.data = data
self.id = id
class Write(Access): pass
class Read(Access): pass
# TestAXI ------------------------------------------------------------------------------------------
class TestAXI(unittest.TestCase):
def test_burst2beat(self):
def bursts_generator(ax, bursts, valid_rand=50):
prng = random.Random(42)
for burst in bursts:
yield ax.valid.eq(1)
yield ax.addr.eq(burst.addr)
yield ax.burst.eq(burst.type)
yield ax.len.eq(burst.len)
yield ax.size.eq(burst.size)
while (yield ax.ready) == 0:
yield
yield ax.valid.eq(0)
while prng.randrange(100) < valid_rand:
yield
yield
@passive
def beats_checker(ax, beats, ready_rand=50):
self.errors = 0
yield ax.ready.eq(0)
prng = random.Random(42)
for beat in beats:
while ((yield ax.valid) and (yield ax.ready)) == 0:
if prng.randrange(100) > ready_rand:
yield ax.ready.eq(1)
else:
yield ax.ready.eq(0)
yield
ax_addr = (yield ax.addr)
#print("0x{:08x}".format(ax_addr))
if ax_addr != beat.addr:
self.errors += 1
yield
# DUT
ax_burst = AXIStreamInterface(layout=ax_description(32), id_width=32)
ax_beat = AXIStreamInterface(layout=ax_description(32), id_width=32)
dut = AXIBurst2Beat(ax_burst, ax_beat)
# Generate DUT input (bursts).
prng = random.Random(42)
bursts = []
for i in range(32):
bursts.append(Burst(prng.randrange(2**32), BURST_FIXED, prng.randrange(255), log2_int(32//8)))
bursts.append(Burst(prng.randrange(2**32), BURST_INCR, prng.randrange(255), log2_int(32//8)))
bursts.append(Burst(4, BURST_WRAP, 4-1, log2_int(2)))
bursts.append(Burst(0x80000160, BURST_WRAP, 0x3, 0b100))
# Generate expected DUT output (beats for reference).
beats = []
for burst in bursts:
beats += burst.to_beats()
# Simulation
generators = [
bursts_generator(ax_burst, bursts),
beats_checker(ax_beat, beats)
]
run_simulation(dut, generators)
self.assertEqual(self.errors, 0)
def _test_axi2wishbone(self,
naccesses=16, simultaneous_writes_reads=False,
# Random: 0: min (no random), 100: max.
# Burst randomness.
id_rand_enable = False,
len_rand_enable = False,
data_rand_enable = False,
# Flow valid randomness.
aw_valid_random = 0,
w_valid_random = 0,
ar_valid_random = 0,
r_valid_random = 0,
# Flow ready randomness.
w_ready_random = 0,
b_ready_random = 0,
r_ready_random = 0
):
def writes_cmd_generator(axi_port, writes):
prng = random.Random(42)
for write in writes:
while prng.randrange(100) < aw_valid_random:
yield
# Send command.
yield axi_port.aw.valid.eq(1)
yield axi_port.aw.addr.eq(write.addr<<2)
yield axi_port.aw.burst.eq(write.type)
yield axi_port.aw.len.eq(write.len)
yield axi_port.aw.size.eq(write.size)
yield axi_port.aw.id.eq(write.id)
yield
while (yield axi_port.aw.ready) == 0:
yield
yield axi_port.aw.valid.eq(0)
def writes_data_generator(axi_port, writes):
prng = random.Random(42)
yield axi_port.w.strb.eq(2**(len(axi_port.w.data)//8) - 1)
for write in writes:
for i, data in enumerate(write.data):
while prng.randrange(100) < w_valid_random:
yield
# Send data.
yield axi_port.w.valid.eq(1)
if (i == (len(write.data) - 1)):
yield axi_port.w.last.eq(1)
else:
yield axi_port.w.last.eq(0)
yield axi_port.w.data.eq(data)
yield
while (yield axi_port.w.ready) == 0:
yield
yield axi_port.w.valid.eq(0)
axi_port.reads_enable = True
def writes_response_generator(axi_port, writes):
prng = random.Random(42)
self.writes_id_errors = 0
for write in writes:
# wait response
yield axi_port.b.ready.eq(0)
yield
while (yield axi_port.b.valid) == 0:
yield
while prng.randrange(100) < b_ready_random:
yield
yield axi_port.b.ready.eq(1)
yield
if (yield axi_port.b.id) != write.id:
self.writes_id_errors += 1
def reads_cmd_generator(axi_port, reads):
prng = random.Random(42)
while not axi_port.reads_enable:
yield
for read in reads:
while prng.randrange(100) < ar_valid_random:
yield
# Send command.
yield axi_port.ar.valid.eq(1)
yield axi_port.ar.addr.eq(read.addr<<2)
yield axi_port.ar.burst.eq(read.type)
yield axi_port.ar.len.eq(read.len)
yield axi_port.ar.size.eq(read.size)
yield axi_port.ar.id.eq(read.id)
yield
while (yield axi_port.ar.ready) == 0:
yield
yield axi_port.ar.valid.eq(0)
def reads_response_data_generator(axi_port, reads):
prng = random.Random(42)
self.reads_data_errors = 0
self.reads_id_errors = 0
self.reads_last_errors = 0
while not axi_port.reads_enable:
yield
for read in reads:
for i, data in enumerate(read.data):
# Wait data / response.
yield axi_port.r.ready.eq(0)
yield
while (yield axi_port.r.valid) == 0:
yield
while prng.randrange(100) < r_ready_random:
yield
yield axi_port.r.ready.eq(1)
yield
if (yield axi_port.r.data) != data:
self.reads_data_errors += 1
if (yield axi_port.r.id) != read.id:
self.reads_id_errors += 1
if i == (len(read.data) - 1):
if (yield axi_port.r.last) != 1:
self.reads_last_errors += 1
else:
if (yield axi_port.r.last) != 0:
self.reads_last_errors += 1
# DUT
class DUT(Module):
def __init__(self):
self.axi = AXIInterface(data_width=32, address_width=32, id_width=8)
self.wishbone = wishbone.Interface(data_width=32, adr_width=30)
axi2wishbone = AXI2Wishbone(self.axi, self.wishbone)
self.submodules += axi2wishbone
wishbone_mem = wishbone.SRAM(1024, bus=self.wishbone)
self.submodules += wishbone_mem
dut = DUT()
# Generate writes/reads.
prng = random.Random(42)
writes = []
offset = 1
for i in range(naccesses):
_id = prng.randrange(2**8) if id_rand_enable else i
_len = prng.randrange(32) if len_rand_enable else i
_data = [prng.randrange(2**32) if data_rand_enable else j for j in range(_len + 1)]
writes.append(Write(offset, _data, _id, type=BURST_INCR, len=_len, size=log2_int(32//8)))
offset += _len + 1
# Dummy reads to ensure datas have been written before the effective reads start.
dummy_reads = [Read(1023, [0], 0, type=BURST_FIXED, len=0, size=log2_int(32//8)) for _ in range(32)]
reads = writes
# Simulation
if simultaneous_writes_reads:
dut.axi.reads_enable = True
else:
dut.axi.reads_enable = False # Will be set by writes_data_generator.
generators = [
writes_cmd_generator(dut.axi, writes),
writes_data_generator(dut.axi, writes),
writes_response_generator(dut.axi, writes),
reads_cmd_generator(dut.axi, reads),
reads_response_data_generator(dut.axi, reads)
]
run_simulation(dut, generators)
self.assertEqual(self.writes_id_errors, 0)
self.assertEqual(self.reads_data_errors, 0)
self.assertEqual(self.reads_id_errors, 0)
self.assertEqual(self.reads_last_errors, 0)
# Test with no randomness.
def test_axi2wishbone_writes_then_reads_no_random(self):
self._test_axi2wishbone(simultaneous_writes_reads=False)
# Test randomness one parameter at a time.
def test_axi2wishbone_writes_then_reads_random_bursts(self):
self._test_axi2wishbone(
simultaneous_writes_reads = False,
id_rand_enable = True,
len_rand_enable = True,
data_rand_enable = True)
def test_axi2wishbone_random_w_ready(self):
self._test_axi2wishbone(w_ready_random=90)
def test_axi2wishbone_random_b_ready(self):
self._test_axi2wishbone(b_ready_random=90)
def test_axi2wishbone_random_r_ready(self):
self._test_axi2wishbone(r_ready_random=90)
def test_axi2wishbone_random_aw_valid(self):
self._test_axi2wishbone(aw_valid_random=90)
def test_axi2wishbone_random_w_valid(self):
self._test_axi2wishbone(w_valid_random=90)
def test_axi2wishbone_random_ar_valid(self):
self._test_axi2wishbone(ar_valid_random=90)
def test_axi2wishbone_random_r_valid(self):
self._test_axi2wishbone(r_valid_random=90)
# Now let's stress things a bit... :)
def test_axi2wishbone_random_all(self):
self._test_axi2wishbone(
simultaneous_writes_reads = False,
id_rand_enable = True,
len_rand_enable = True,
aw_valid_random = 50,
w_ready_random = 50,
b_ready_random = 50,
w_valid_random = 50,
ar_valid_random = 90,
r_valid_random = 90,
r_ready_random = 90
)
def test_axi_down_converter(self):
class DUT(LiteXModule):
def __init__(self, dw_from=64, dw_to=32):
self.axi_master = AXIInterface(data_width=dw_from)
axi_slave = AXIInterface(data_width=dw_to)
wb_slave = wishbone.Interface(data_width=dw_to, address_width=axi_slave.address_width)
self.converter = AXIConverter(self.axi_master, axi_slave)
self.axi2wb = AXI2Wishbone(axi_slave, wb_slave)
self.mem = wishbone.SRAM(1024, bus=wb_slave, init=range(256))
def read_generator(dut):
axi_port = dut.axi_master
# AXI Read.
addr = 0x34
yield axi_port.ar.addr.eq(addr * 4)
yield axi_port.ar.valid.eq(1)
yield axi_port.ar.burst.eq(0b1)
yield axi_port.ar.len.eq(0)
yield axi_port.ar.size.eq(0b011)
yield axi_port.r.ready.eq(1)
yield
while (yield axi_port.r.valid) == 0:
yield
rd = (yield axi_port.r.data)
# Check Mem Content.
mem_content = 0
i = 0
while i < axi_port.data_width // dut.mem.bus.data_width:
mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width)
i += 1
assert rd == mem_content, (hex(rd), hex(mem_content))
def write_generator(dut):
axi_port = dut.axi_master
# AXI Write.
addr = 0x24
data = 0x98761244
yield axi_port.aw.addr.eq(addr * 4)
yield axi_port.aw.valid.eq(1)
yield axi_port.aw.burst.eq(0b1)
yield axi_port.aw.len.eq(0)
yield axi_port.aw.size.eq(0b011)
yield axi_port.w.strb.eq(0b111111111)
yield axi_port.w.data.eq(data)
yield axi_port.w.valid.eq(1)
yield axi_port.w.last.eq(1)
yield
while (yield axi_port.aw.ready) == 0:
yield
yield axi_port.aw.valid.eq(0)
while (yield axi_port.w.ready) == 0:
yield
yield axi_port.w.valid.eq(0)
# Check Mem Content.
mem_content = 0
i = 0
while i < axi_port.data_width // dut.mem.bus.data_width:
mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width)
i += 1
assert data == mem_content, (hex(data), hex(mem_content))
dut = DUT(64, 32)
run_simulation(dut, [read_generator(dut), write_generator(dut)], vcd_name="sim.vcd")