408 lines
15 KiB
Python
408 lines
15 KiB
Python
#
|
|
# This file is part of LiteX.
|
|
#
|
|
# Copyright (c) 2019-2022 Florent Kermarrec <florent@enjoy-digital.fr>
|
|
# SPDX-License-Identifier: BSD-2-Clause
|
|
|
|
import unittest
|
|
import random
|
|
|
|
from migen import *
|
|
|
|
from litex.gen import *
|
|
|
|
from litex.soc.interconnect.axi import *
|
|
from litex.soc.interconnect import wishbone
|
|
|
|
# Software Models ----------------------------------------------------------------------------------
|
|
|
|
class Burst:
|
|
def __init__(self, addr, type=BURST_FIXED, len=0, size=0):
|
|
self.addr = addr
|
|
self.type = type
|
|
self.len = len
|
|
self.size = size
|
|
|
|
def to_beats(self):
|
|
r = []
|
|
burst_length = self.len + 1
|
|
burst_size = 2**self.size
|
|
for i in range(burst_length):
|
|
if self.type == BURST_INCR:
|
|
offset = i*2**(self.size)
|
|
r += [Beat(self.addr + offset)]
|
|
elif self.type == BURST_WRAP:
|
|
assert burst_length in [2, 4, 8, 16]
|
|
assert (self.addr % burst_size) == 0
|
|
burst_base = self.addr - self.addr % (burst_length * burst_size)
|
|
burst_offset = self.addr % (burst_length * burst_size)
|
|
burst_addr = burst_base + (burst_offset + i*burst_size) % (burst_length * burst_size)
|
|
#print("0x{:08x}".format(burst_addr))
|
|
r += [Beat(burst_addr)]
|
|
else:
|
|
r += [Beat(self.addr)]
|
|
return r
|
|
|
|
|
|
class Beat:
|
|
def __init__(self, addr):
|
|
self.addr = addr
|
|
|
|
|
|
class Access(Burst):
|
|
def __init__(self, addr, data, id, **kwargs):
|
|
Burst.__init__(self, addr, **kwargs)
|
|
self.data = data
|
|
self.id = id
|
|
|
|
|
|
class Write(Access): pass
|
|
|
|
class Read(Access): pass
|
|
|
|
# TestAXI ------------------------------------------------------------------------------------------
|
|
|
|
class TestAXI(unittest.TestCase):
|
|
def test_burst2beat(self):
|
|
def bursts_generator(ax, bursts, valid_rand=50):
|
|
prng = random.Random(42)
|
|
for burst in bursts:
|
|
yield ax.valid.eq(1)
|
|
yield ax.addr.eq(burst.addr)
|
|
yield ax.burst.eq(burst.type)
|
|
yield ax.len.eq(burst.len)
|
|
yield ax.size.eq(burst.size)
|
|
while (yield ax.ready) == 0:
|
|
yield
|
|
yield ax.valid.eq(0)
|
|
while prng.randrange(100) < valid_rand:
|
|
yield
|
|
yield
|
|
|
|
@passive
|
|
def beats_checker(ax, beats, ready_rand=50):
|
|
self.errors = 0
|
|
yield ax.ready.eq(0)
|
|
prng = random.Random(42)
|
|
for beat in beats:
|
|
while ((yield ax.valid) and (yield ax.ready)) == 0:
|
|
if prng.randrange(100) > ready_rand:
|
|
yield ax.ready.eq(1)
|
|
else:
|
|
yield ax.ready.eq(0)
|
|
yield
|
|
ax_addr = (yield ax.addr)
|
|
#print("0x{:08x}".format(ax_addr))
|
|
if ax_addr != beat.addr:
|
|
self.errors += 1
|
|
yield
|
|
|
|
# DUT
|
|
ax_burst = AXIStreamInterface(layout=ax_description(32), id_width=32)
|
|
ax_beat = AXIStreamInterface(layout=ax_description(32), id_width=32)
|
|
dut = AXIBurst2Beat(ax_burst, ax_beat)
|
|
|
|
# Generate DUT input (bursts).
|
|
prng = random.Random(42)
|
|
bursts = []
|
|
for i in range(32):
|
|
bursts.append(Burst(prng.randrange(2**32), BURST_FIXED, prng.randrange(255), log2_int(32//8)))
|
|
bursts.append(Burst(prng.randrange(2**32), BURST_INCR, prng.randrange(255), log2_int(32//8)))
|
|
bursts.append(Burst(4, BURST_WRAP, 4-1, log2_int(2)))
|
|
bursts.append(Burst(0x80000160, BURST_WRAP, 0x3, 0b100))
|
|
|
|
# Generate expected DUT output (beats for reference).
|
|
beats = []
|
|
for burst in bursts:
|
|
beats += burst.to_beats()
|
|
|
|
# Simulation
|
|
generators = [
|
|
bursts_generator(ax_burst, bursts),
|
|
beats_checker(ax_beat, beats)
|
|
]
|
|
run_simulation(dut, generators)
|
|
self.assertEqual(self.errors, 0)
|
|
|
|
|
|
def _test_axi2wishbone(self,
|
|
naccesses=16, simultaneous_writes_reads=False,
|
|
# Random: 0: min (no random), 100: max.
|
|
# Burst randomness.
|
|
id_rand_enable = False,
|
|
len_rand_enable = False,
|
|
data_rand_enable = False,
|
|
# Flow valid randomness.
|
|
aw_valid_random = 0,
|
|
w_valid_random = 0,
|
|
ar_valid_random = 0,
|
|
r_valid_random = 0,
|
|
# Flow ready randomness.
|
|
w_ready_random = 0,
|
|
b_ready_random = 0,
|
|
r_ready_random = 0
|
|
):
|
|
|
|
def writes_cmd_generator(axi_port, writes):
|
|
prng = random.Random(42)
|
|
for write in writes:
|
|
while prng.randrange(100) < aw_valid_random:
|
|
yield
|
|
# Send command.
|
|
yield axi_port.aw.valid.eq(1)
|
|
yield axi_port.aw.addr.eq(write.addr<<2)
|
|
yield axi_port.aw.burst.eq(write.type)
|
|
yield axi_port.aw.len.eq(write.len)
|
|
yield axi_port.aw.size.eq(write.size)
|
|
yield axi_port.aw.id.eq(write.id)
|
|
yield
|
|
while (yield axi_port.aw.ready) == 0:
|
|
yield
|
|
yield axi_port.aw.valid.eq(0)
|
|
|
|
def writes_data_generator(axi_port, writes):
|
|
prng = random.Random(42)
|
|
yield axi_port.w.strb.eq(2**(len(axi_port.w.data)//8) - 1)
|
|
for write in writes:
|
|
for i, data in enumerate(write.data):
|
|
while prng.randrange(100) < w_valid_random:
|
|
yield
|
|
# Send data.
|
|
yield axi_port.w.valid.eq(1)
|
|
if (i == (len(write.data) - 1)):
|
|
yield axi_port.w.last.eq(1)
|
|
else:
|
|
yield axi_port.w.last.eq(0)
|
|
yield axi_port.w.data.eq(data)
|
|
yield
|
|
while (yield axi_port.w.ready) == 0:
|
|
yield
|
|
yield axi_port.w.valid.eq(0)
|
|
axi_port.reads_enable = True
|
|
|
|
def writes_response_generator(axi_port, writes):
|
|
prng = random.Random(42)
|
|
self.writes_id_errors = 0
|
|
for write in writes:
|
|
# wait response
|
|
yield axi_port.b.ready.eq(0)
|
|
yield
|
|
while (yield axi_port.b.valid) == 0:
|
|
yield
|
|
while prng.randrange(100) < b_ready_random:
|
|
yield
|
|
yield axi_port.b.ready.eq(1)
|
|
yield
|
|
if (yield axi_port.b.id) != write.id:
|
|
self.writes_id_errors += 1
|
|
|
|
def reads_cmd_generator(axi_port, reads):
|
|
prng = random.Random(42)
|
|
while not axi_port.reads_enable:
|
|
yield
|
|
for read in reads:
|
|
while prng.randrange(100) < ar_valid_random:
|
|
yield
|
|
# Send command.
|
|
yield axi_port.ar.valid.eq(1)
|
|
yield axi_port.ar.addr.eq(read.addr<<2)
|
|
yield axi_port.ar.burst.eq(read.type)
|
|
yield axi_port.ar.len.eq(read.len)
|
|
yield axi_port.ar.size.eq(read.size)
|
|
yield axi_port.ar.id.eq(read.id)
|
|
yield
|
|
while (yield axi_port.ar.ready) == 0:
|
|
yield
|
|
yield axi_port.ar.valid.eq(0)
|
|
|
|
def reads_response_data_generator(axi_port, reads):
|
|
prng = random.Random(42)
|
|
self.reads_data_errors = 0
|
|
self.reads_id_errors = 0
|
|
self.reads_last_errors = 0
|
|
while not axi_port.reads_enable:
|
|
yield
|
|
for read in reads:
|
|
for i, data in enumerate(read.data):
|
|
# Wait data / response.
|
|
yield axi_port.r.ready.eq(0)
|
|
yield
|
|
while (yield axi_port.r.valid) == 0:
|
|
yield
|
|
while prng.randrange(100) < r_ready_random:
|
|
yield
|
|
yield axi_port.r.ready.eq(1)
|
|
yield
|
|
if (yield axi_port.r.data) != data:
|
|
self.reads_data_errors += 1
|
|
if (yield axi_port.r.id) != read.id:
|
|
self.reads_id_errors += 1
|
|
if i == (len(read.data) - 1):
|
|
if (yield axi_port.r.last) != 1:
|
|
self.reads_last_errors += 1
|
|
else:
|
|
if (yield axi_port.r.last) != 0:
|
|
self.reads_last_errors += 1
|
|
|
|
# DUT
|
|
class DUT(Module):
|
|
def __init__(self):
|
|
self.axi = AXIInterface(data_width=32, address_width=32, id_width=8)
|
|
self.wishbone = wishbone.Interface(data_width=32, adr_width=30, addressing="word")
|
|
|
|
axi2wishbone = AXI2Wishbone(self.axi, self.wishbone)
|
|
self.submodules += axi2wishbone
|
|
|
|
wishbone_mem = wishbone.SRAM(1024, bus=self.wishbone)
|
|
self.submodules += wishbone_mem
|
|
|
|
dut = DUT()
|
|
|
|
# Generate writes/reads.
|
|
prng = random.Random(42)
|
|
writes = []
|
|
offset = 1
|
|
for i in range(naccesses):
|
|
_id = prng.randrange(2**8) if id_rand_enable else i
|
|
_len = prng.randrange(32) if len_rand_enable else i
|
|
_data = [prng.randrange(2**32) if data_rand_enable else j for j in range(_len + 1)]
|
|
writes.append(Write(offset, _data, _id, type=BURST_INCR, len=_len, size=log2_int(32//8)))
|
|
offset += _len + 1
|
|
# Dummy reads to ensure datas have been written before the effective reads start.
|
|
dummy_reads = [Read(1023, [0], 0, type=BURST_FIXED, len=0, size=log2_int(32//8)) for _ in range(32)]
|
|
reads = writes
|
|
|
|
# Simulation
|
|
if simultaneous_writes_reads:
|
|
dut.axi.reads_enable = True
|
|
else:
|
|
dut.axi.reads_enable = False # Will be set by writes_data_generator.
|
|
generators = [
|
|
writes_cmd_generator(dut.axi, writes),
|
|
writes_data_generator(dut.axi, writes),
|
|
writes_response_generator(dut.axi, writes),
|
|
reads_cmd_generator(dut.axi, reads),
|
|
reads_response_data_generator(dut.axi, reads)
|
|
]
|
|
run_simulation(dut, generators)
|
|
self.assertEqual(self.writes_id_errors, 0)
|
|
self.assertEqual(self.reads_data_errors, 0)
|
|
self.assertEqual(self.reads_id_errors, 0)
|
|
self.assertEqual(self.reads_last_errors, 0)
|
|
|
|
# Test with no randomness.
|
|
def test_axi2wishbone_writes_then_reads_no_random(self):
|
|
self._test_axi2wishbone(simultaneous_writes_reads=False)
|
|
|
|
# Test randomness one parameter at a time.
|
|
def test_axi2wishbone_writes_then_reads_random_bursts(self):
|
|
self._test_axi2wishbone(
|
|
simultaneous_writes_reads = False,
|
|
id_rand_enable = True,
|
|
len_rand_enable = True,
|
|
data_rand_enable = True)
|
|
|
|
def test_axi2wishbone_random_w_ready(self):
|
|
self._test_axi2wishbone(w_ready_random=90)
|
|
|
|
def test_axi2wishbone_random_b_ready(self):
|
|
self._test_axi2wishbone(b_ready_random=90)
|
|
|
|
def test_axi2wishbone_random_r_ready(self):
|
|
self._test_axi2wishbone(r_ready_random=90)
|
|
|
|
def test_axi2wishbone_random_aw_valid(self):
|
|
self._test_axi2wishbone(aw_valid_random=90)
|
|
|
|
def test_axi2wishbone_random_w_valid(self):
|
|
self._test_axi2wishbone(w_valid_random=90)
|
|
|
|
def test_axi2wishbone_random_ar_valid(self):
|
|
self._test_axi2wishbone(ar_valid_random=90)
|
|
|
|
def test_axi2wishbone_random_r_valid(self):
|
|
self._test_axi2wishbone(r_valid_random=90)
|
|
|
|
# Now let's stress things a bit... :)
|
|
def test_axi2wishbone_random_all(self):
|
|
self._test_axi2wishbone(
|
|
simultaneous_writes_reads = False,
|
|
id_rand_enable = True,
|
|
len_rand_enable = True,
|
|
aw_valid_random = 50,
|
|
w_ready_random = 50,
|
|
b_ready_random = 50,
|
|
w_valid_random = 50,
|
|
ar_valid_random = 90,
|
|
r_valid_random = 90,
|
|
r_ready_random = 90
|
|
)
|
|
|
|
def test_axi_down_converter(self):
|
|
class DUT(LiteXModule):
|
|
def __init__(self, dw_from=64, dw_to=32):
|
|
self.axi_master = AXIInterface(data_width=dw_from)
|
|
axi_slave = AXIInterface(data_width=dw_to)
|
|
wb_slave = wishbone.Interface(data_width=dw_to, address_width=axi_slave.address_width, addressing="word")
|
|
self.converter = AXIConverter(self.axi_master, axi_slave)
|
|
self.axi2wb = AXI2Wishbone(axi_slave, wb_slave)
|
|
self.mem = wishbone.SRAM(1024, bus=wb_slave, init=range(256))
|
|
|
|
def read_generator(dut):
|
|
axi_port = dut.axi_master
|
|
|
|
# AXI Read.
|
|
addr = 0x34
|
|
yield axi_port.ar.addr.eq(addr * 4)
|
|
yield axi_port.ar.valid.eq(1)
|
|
yield axi_port.ar.burst.eq(0b1)
|
|
yield axi_port.ar.len.eq(0)
|
|
yield axi_port.ar.size.eq(0b011)
|
|
yield axi_port.r.ready.eq(1)
|
|
yield
|
|
while (yield axi_port.r.valid) == 0:
|
|
yield
|
|
rd = (yield axi_port.r.data)
|
|
|
|
# Check Mem Content.
|
|
mem_content = 0
|
|
i = 0
|
|
while i < axi_port.data_width // dut.mem.bus.data_width:
|
|
mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width)
|
|
i += 1
|
|
assert rd == mem_content, (hex(rd), hex(mem_content))
|
|
|
|
def write_generator(dut):
|
|
axi_port = dut.axi_master
|
|
|
|
# AXI Write.
|
|
addr = 0x24
|
|
data = 0x98761244
|
|
yield axi_port.aw.addr.eq(addr * 4)
|
|
yield axi_port.aw.valid.eq(1)
|
|
yield axi_port.aw.burst.eq(0b1)
|
|
yield axi_port.aw.len.eq(0)
|
|
yield axi_port.aw.size.eq(0b011)
|
|
yield axi_port.w.strb.eq(0b111111111)
|
|
yield axi_port.w.data.eq(data)
|
|
yield axi_port.w.valid.eq(1)
|
|
yield axi_port.w.last.eq(1)
|
|
yield
|
|
while (yield axi_port.aw.ready) == 0:
|
|
yield
|
|
yield axi_port.aw.valid.eq(0)
|
|
while (yield axi_port.w.ready) == 0:
|
|
yield
|
|
yield axi_port.w.valid.eq(0)
|
|
|
|
# Check Mem Content.
|
|
mem_content = 0
|
|
i = 0
|
|
while i < axi_port.data_width // dut.mem.bus.data_width:
|
|
mem_content |= (yield dut.mem.mem[addr + i]) << (i * dut.mem.bus.data_width)
|
|
i += 1
|
|
assert data == mem_content, (hex(data), hex(mem_content))
|
|
|
|
dut = DUT(64, 32)
|
|
run_simulation(dut, [read_generator(dut), write_generator(dut)], vcd_name="sim.vcd")
|