litex/verilog/lm32/lm32_decoder.v
Michael Walle 47baad4fe1 lm32: replace clogb2 by builtin $clog2
This function is fixed in ISE since version 14.1 (see AR #44586). If the
builtin function is used, the design can be simulated with Icarus Verilog.

Signed-off-by: Michael Walle <michael@walle.cc>
2012-11-14 14:07:28 +01:00

602 lines
19 KiB
Verilog

// ==================================================================
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
// ------------------------------------------------------------------
// Copyright (c) 2006-2011 by Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// ------------------------------------------------------------------
//
// IMPORTANT: THIS FILE IS AUTO-GENERATED BY THE LATTICEMICO SYSTEM.
//
// Permission:
//
// Lattice Semiconductor grants permission to use this code
// pursuant to the terms of the Lattice Semiconductor Corporation
// Open Source License Agreement.
//
// Disclaimer:
//
// Lattice Semiconductor provides no warranty regarding the use or
// functionality of this code. It is the user's responsibility to
// verify the user's design for consistency and functionality through
// the use of formal verification methods.
//
// --------------------------------------------------------------------
//
// Lattice Semiconductor Corporation
// 5555 NE Moore Court
// Hillsboro, OR 97214
// U.S.A
//
// TEL: 1-800-Lattice (USA and Canada)
// 503-286-8001 (other locations)
//
// web: http://www.latticesemi.com/
// email: techsupport@latticesemi.com
//
// --------------------------------------------------------------------
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_decoder.v
// Title : Instruction decoder
// Dependencies : lm32_include.v
// Version : 6.1.17
// : Initial Release
// Version : 7.0SP2, 3.0
// : No Change
// Version : 3.1
// : Support for static branch prediction. Information about
// : branch type is generated and passed on to the predictor.
// Version : 3.2
// : No change
// Version : 3.3
// : Renamed port names that conflict with keywords reserved
// : in System-Verilog.
// =============================================================================
`include "lm32_include.v"
// Index of opcode field in an instruction
`define LM32_OPCODE_RNG 31:26
`define LM32_OP_RNG 30:26
// Opcodes - Some are only listed as 5 bits as their MSB is a don't care
`define LM32_OPCODE_ADD 5'b01101
`define LM32_OPCODE_AND 5'b01000
`define LM32_OPCODE_ANDHI 6'b011000
`define LM32_OPCODE_B 6'b110000
`define LM32_OPCODE_BI 6'b111000
`define LM32_OPCODE_BE 6'b010001
`define LM32_OPCODE_BG 6'b010010
`define LM32_OPCODE_BGE 6'b010011
`define LM32_OPCODE_BGEU 6'b010100
`define LM32_OPCODE_BGU 6'b010101
`define LM32_OPCODE_BNE 6'b010111
`define LM32_OPCODE_CALL 6'b110110
`define LM32_OPCODE_CALLI 6'b111110
`define LM32_OPCODE_CMPE 5'b11001
`define LM32_OPCODE_CMPG 5'b11010
`define LM32_OPCODE_CMPGE 5'b11011
`define LM32_OPCODE_CMPGEU 5'b11100
`define LM32_OPCODE_CMPGU 5'b11101
`define LM32_OPCODE_CMPNE 5'b11111
`define LM32_OPCODE_DIVU 6'b100011
`define LM32_OPCODE_LB 6'b000100
`define LM32_OPCODE_LBU 6'b010000
`define LM32_OPCODE_LH 6'b000111
`define LM32_OPCODE_LHU 6'b001011
`define LM32_OPCODE_LW 6'b001010
`define LM32_OPCODE_MODU 6'b110001
`define LM32_OPCODE_MUL 5'b00010
`define LM32_OPCODE_NOR 5'b00001
`define LM32_OPCODE_OR 5'b01110
`define LM32_OPCODE_ORHI 6'b011110
`define LM32_OPCODE_RAISE 6'b101011
`define LM32_OPCODE_RCSR 6'b100100
`define LM32_OPCODE_SB 6'b001100
`define LM32_OPCODE_SEXTB 6'b101100
`define LM32_OPCODE_SEXTH 6'b110111
`define LM32_OPCODE_SH 6'b000011
`define LM32_OPCODE_SL 5'b01111
`define LM32_OPCODE_SR 5'b00101
`define LM32_OPCODE_SRU 5'b00000
`define LM32_OPCODE_SUB 6'b110010
`define LM32_OPCODE_SW 6'b010110
`define LM32_OPCODE_USER 6'b110011
`define LM32_OPCODE_WCSR 6'b110100
`define LM32_OPCODE_XNOR 5'b01001
`define LM32_OPCODE_XOR 5'b00110
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_decoder (
// ----- Inputs -------
instruction,
// ----- Outputs -------
d_result_sel_0,
d_result_sel_1,
x_result_sel_csr,
`ifdef LM32_MC_ARITHMETIC_ENABLED
x_result_sel_mc_arith,
`endif
`ifdef LM32_NO_BARREL_SHIFT
x_result_sel_shift,
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
x_result_sel_sext,
`endif
x_result_sel_logic,
`ifdef CFG_USER_ENABLED
x_result_sel_user,
`endif
x_result_sel_add,
m_result_sel_compare,
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
m_result_sel_shift,
`endif
w_result_sel_load,
`ifdef CFG_PL_MULTIPLY_ENABLED
w_result_sel_mul,
`endif
x_bypass_enable,
m_bypass_enable,
read_enable_0,
read_idx_0,
read_enable_1,
read_idx_1,
write_enable,
write_idx,
immediate,
branch_offset,
load,
store,
size,
sign_extend,
adder_op,
logic_op,
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
direction,
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
shift_left,
shift_right,
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
multiply,
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
divide,
modulus,
`endif
branch,
branch_reg,
condition,
bi_conditional,
bi_unconditional,
`ifdef CFG_DEBUG_ENABLED
break_opcode,
`endif
scall,
eret,
`ifdef CFG_DEBUG_ENABLED
bret,
`endif
`ifdef CFG_USER_ENABLED
user_opcode,
`endif
csr_write_enable
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input [`LM32_INSTRUCTION_RNG] instruction; // Instruction to decode
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_D_RESULT_SEL_0_RNG] d_result_sel_0;
reg [`LM32_D_RESULT_SEL_0_RNG] d_result_sel_0;
output [`LM32_D_RESULT_SEL_1_RNG] d_result_sel_1;
reg [`LM32_D_RESULT_SEL_1_RNG] d_result_sel_1;
output x_result_sel_csr;
reg x_result_sel_csr;
`ifdef LM32_MC_ARITHMETIC_ENABLED
output x_result_sel_mc_arith;
reg x_result_sel_mc_arith;
`endif
`ifdef LM32_NO_BARREL_SHIFT
output x_result_sel_shift;
reg x_result_sel_shift;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
output x_result_sel_sext;
reg x_result_sel_sext;
`endif
output x_result_sel_logic;
reg x_result_sel_logic;
`ifdef CFG_USER_ENABLED
output x_result_sel_user;
reg x_result_sel_user;
`endif
output x_result_sel_add;
reg x_result_sel_add;
output m_result_sel_compare;
reg m_result_sel_compare;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
output m_result_sel_shift;
reg m_result_sel_shift;
`endif
output w_result_sel_load;
reg w_result_sel_load;
`ifdef CFG_PL_MULTIPLY_ENABLED
output w_result_sel_mul;
reg w_result_sel_mul;
`endif
output x_bypass_enable;
wire x_bypass_enable;
output m_bypass_enable;
wire m_bypass_enable;
output read_enable_0;
wire read_enable_0;
output [`LM32_REG_IDX_RNG] read_idx_0;
wire [`LM32_REG_IDX_RNG] read_idx_0;
output read_enable_1;
wire read_enable_1;
output [`LM32_REG_IDX_RNG] read_idx_1;
wire [`LM32_REG_IDX_RNG] read_idx_1;
output write_enable;
wire write_enable;
output [`LM32_REG_IDX_RNG] write_idx;
wire [`LM32_REG_IDX_RNG] write_idx;
output [`LM32_WORD_RNG] immediate;
wire [`LM32_WORD_RNG] immediate;
output [`LM32_PC_RNG] branch_offset;
wire [`LM32_PC_RNG] branch_offset;
output load;
wire load;
output store;
wire store;
output [`LM32_SIZE_RNG] size;
wire [`LM32_SIZE_RNG] size;
output sign_extend;
wire sign_extend;
output adder_op;
wire adder_op;
output [`LM32_LOGIC_OP_RNG] logic_op;
wire [`LM32_LOGIC_OP_RNG] logic_op;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
output direction;
wire direction;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
output shift_left;
wire shift_left;
output shift_right;
wire shift_right;
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
output multiply;
wire multiply;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
output divide;
wire divide;
output modulus;
wire modulus;
`endif
output branch;
wire branch;
output branch_reg;
wire branch_reg;
output [`LM32_CONDITION_RNG] condition;
wire [`LM32_CONDITION_RNG] condition;
output bi_conditional;
wire bi_conditional;
output bi_unconditional;
wire bi_unconditional;
`ifdef CFG_DEBUG_ENABLED
output break_opcode;
wire break_opcode;
`endif
output scall;
wire scall;
output eret;
wire eret;
`ifdef CFG_DEBUG_ENABLED
output bret;
wire bret;
`endif
`ifdef CFG_USER_ENABLED
output [`LM32_USER_OPCODE_RNG] user_opcode;
wire [`LM32_USER_OPCODE_RNG] user_opcode;
`endif
output csr_write_enable;
wire csr_write_enable;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire [`LM32_WORD_RNG] extended_immediate; // Zero or sign extended immediate
wire [`LM32_WORD_RNG] high_immediate; // Immediate as high 16 bits
wire [`LM32_WORD_RNG] call_immediate; // Call immediate
wire [`LM32_WORD_RNG] branch_immediate; // Conditional branch immediate
wire sign_extend_immediate; // Whether the immediate should be sign extended (`TRUE) or zero extended (`FALSE)
wire select_high_immediate; // Whether to select the high immediate
wire select_call_immediate; // Whether to select the call immediate
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
// Determine opcode
assign op_add = instruction[`LM32_OP_RNG] == `LM32_OPCODE_ADD;
assign op_and = instruction[`LM32_OP_RNG] == `LM32_OPCODE_AND;
assign op_andhi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_ANDHI;
assign op_b = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_B;
assign op_bi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BI;
assign op_be = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BE;
assign op_bg = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BG;
assign op_bge = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGE;
assign op_bgeu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGEU;
assign op_bgu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGU;
assign op_bne = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BNE;
assign op_call = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_CALL;
assign op_calli = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_CALLI;
assign op_cmpe = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPE;
assign op_cmpg = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPG;
assign op_cmpge = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGE;
assign op_cmpgeu = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGEU;
assign op_cmpgu = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGU;
assign op_cmpne = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPNE;
`ifdef CFG_MC_DIVIDE_ENABLED
assign op_divu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_DIVU;
`endif
assign op_lb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LB;
assign op_lbu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LBU;
assign op_lh = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LH;
assign op_lhu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LHU;
assign op_lw = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LW;
`ifdef CFG_MC_DIVIDE_ENABLED
assign op_modu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_MODU;
`endif
`ifdef LM32_MULTIPLY_ENABLED
assign op_mul = instruction[`LM32_OP_RNG] == `LM32_OPCODE_MUL;
`endif
assign op_nor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_NOR;
assign op_or = instruction[`LM32_OP_RNG] == `LM32_OPCODE_OR;
assign op_orhi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_ORHI;
assign op_raise = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_RAISE;
assign op_rcsr = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_RCSR;
assign op_sb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SB;
`ifdef CFG_SIGN_EXTEND_ENABLED
assign op_sextb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SEXTB;
assign op_sexth = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SEXTH;
`endif
assign op_sh = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SH;
`ifdef LM32_BARREL_SHIFT_ENABLED
assign op_sl = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SL;
`endif
assign op_sr = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SR;
assign op_sru = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SRU;
assign op_sub = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SUB;
assign op_sw = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SW;
assign op_user = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_USER;
assign op_wcsr = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_WCSR;
assign op_xnor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_XNOR;
assign op_xor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_XOR;
// Group opcodes by function
assign arith = op_add | op_sub;
assign logical = op_and | op_andhi | op_nor | op_or | op_orhi | op_xor | op_xnor;
assign cmp = op_cmpe | op_cmpg | op_cmpge | op_cmpgeu | op_cmpgu | op_cmpne;
assign bi_conditional = op_be | op_bg | op_bge | op_bgeu | op_bgu | op_bne;
assign bi_unconditional = op_bi;
assign bra = op_b | bi_unconditional | bi_conditional;
assign call = op_call | op_calli;
`ifdef LM32_BARREL_SHIFT_ENABLED
assign shift = op_sl | op_sr | op_sru;
`endif
`ifdef LM32_NO_BARREL_SHIFT
assign shift = op_sr | op_sru;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
assign shift_left = op_sl;
assign shift_right = op_sr | op_sru;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
assign sext = op_sextb | op_sexth;
`endif
`ifdef LM32_MULTIPLY_ENABLED
assign multiply = op_mul;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
assign divide = op_divu;
assign modulus = op_modu;
`endif
assign load = op_lb | op_lbu | op_lh | op_lhu | op_lw;
assign store = op_sb | op_sh | op_sw;
// Select pipeline multiplexor controls
always @(*)
begin
// D stage
if (call)
d_result_sel_0 = `LM32_D_RESULT_SEL_0_NEXT_PC;
else
d_result_sel_0 = `LM32_D_RESULT_SEL_0_REG_0;
if (call)
d_result_sel_1 = `LM32_D_RESULT_SEL_1_ZERO;
else if ((instruction[31] == 1'b0) && !bra)
d_result_sel_1 = `LM32_D_RESULT_SEL_1_IMMEDIATE;
else
d_result_sel_1 = `LM32_D_RESULT_SEL_1_REG_1;
// X stage
x_result_sel_csr = `FALSE;
`ifdef LM32_MC_ARITHMETIC_ENABLED
x_result_sel_mc_arith = `FALSE;
`endif
`ifdef LM32_NO_BARREL_SHIFT
x_result_sel_shift = `FALSE;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
x_result_sel_sext = `FALSE;
`endif
x_result_sel_logic = `FALSE;
`ifdef CFG_USER_ENABLED
x_result_sel_user = `FALSE;
`endif
x_result_sel_add = `FALSE;
if (op_rcsr)
x_result_sel_csr = `TRUE;
`ifdef LM32_MC_ARITHMETIC_ENABLED
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
else if (shift_left | shift_right)
x_result_sel_mc_arith = `TRUE;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
else if (divide | modulus)
x_result_sel_mc_arith = `TRUE;
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
else if (multiply)
x_result_sel_mc_arith = `TRUE;
`endif
`endif
`ifdef LM32_NO_BARREL_SHIFT
else if (shift)
x_result_sel_shift = `TRUE;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
else if (sext)
x_result_sel_sext = `TRUE;
`endif
else if (logical)
x_result_sel_logic = `TRUE;
`ifdef CFG_USER_ENABLED
else if (op_user)
x_result_sel_user = `TRUE;
`endif
else
x_result_sel_add = `TRUE;
// M stage
m_result_sel_compare = cmp;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
m_result_sel_shift = shift;
`endif
// W stage
w_result_sel_load = load;
`ifdef CFG_PL_MULTIPLY_ENABLED
w_result_sel_mul = op_mul;
`endif
end
// Set if result is valid at end of X stage
assign x_bypass_enable = arith
| logical
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
| shift_left
| shift_right
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
| multiply
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
| divide
| modulus
`endif
`ifdef LM32_NO_BARREL_SHIFT
| shift
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
| sext
`endif
`ifdef CFG_USER_ENABLED
| op_user
`endif
| op_rcsr
;
// Set if result is valid at end of M stage
assign m_bypass_enable = x_bypass_enable
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
| shift
`endif
| cmp
;
// Register file read port 0
assign read_enable_0 = ~(op_bi | op_calli);
assign read_idx_0 = instruction[25:21];
// Register file read port 1
assign read_enable_1 = ~(op_bi | op_calli | load);
assign read_idx_1 = instruction[20:16];
// Register file write port
assign write_enable = ~(bra | op_raise | store | op_wcsr);
assign write_idx = call
? 5'd29
: instruction[31] == 1'b0
? instruction[20:16]
: instruction[15:11];
// Size of load/stores
assign size = instruction[27:26];
// Whether to sign or zero extend
assign sign_extend = instruction[28];
// Set adder_op to 1 to perform a subtraction
assign adder_op = op_sub | op_cmpe | op_cmpg | op_cmpge | op_cmpgeu | op_cmpgu | op_cmpne | bra;
// Logic operation (and, or, etc)
assign logic_op = instruction[29:26];
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
// Shift direction
assign direction = instruction[29];
`endif
// Control flow microcodes
assign branch = bra | call;
assign branch_reg = op_call | op_b;
assign condition = instruction[28:26];
`ifdef CFG_DEBUG_ENABLED
assign break_opcode = op_raise & ~instruction[2];
`endif
assign scall = op_raise & instruction[2];
assign eret = op_b & (instruction[25:21] == 5'd30);
`ifdef CFG_DEBUG_ENABLED
assign bret = op_b & (instruction[25:21] == 5'd31);
`endif
`ifdef CFG_USER_ENABLED
// Extract user opcode
assign user_opcode = instruction[10:0];
`endif
// CSR read/write
assign csr_write_enable = op_wcsr;
// Extract immediate from instruction
assign sign_extend_immediate = ~(op_and | op_cmpgeu | op_cmpgu | op_nor | op_or | op_xnor | op_xor);
assign select_high_immediate = op_andhi | op_orhi;
assign select_call_immediate = instruction[31];
assign high_immediate = {instruction[15:0], 16'h0000};
assign extended_immediate = {{16{sign_extend_immediate & instruction[15]}}, instruction[15:0]};
assign call_immediate = {{6{instruction[25]}}, instruction[25:0]};
assign branch_immediate = {{16{instruction[15]}}, instruction[15:0]};
assign immediate = select_high_immediate == `TRUE
? high_immediate
: extended_immediate;
assign branch_offset = select_call_immediate == `TRUE
? call_immediate
: branch_immediate;
endmodule