litex/migen/fhdl/namer.py
2012-01-16 18:42:55 +01:00

148 lines
3.6 KiB
Python

import inspect
import re
from itertools import combinations
class NoContext:
pass
def trace_back(name=None):
l = []
frame = inspect.currentframe().f_back.f_back
while frame is not None:
try:
obj = frame.f_locals["self"]
except KeyError:
obj = None
if obj is None or isinstance(obj, NoContext):
modules = frame.f_globals["__name__"]
modules = modules.split(".")
obj = modules[len(modules)-1]
if name is None:
line = inspect.getframeinfo(frame).code_context[0]
m = re.match("[\t ]*([0-9A-Za-z_\.]+)[\t ]*=", line)
if m is None:
name = None
else:
names = m.group(1).split(".")
name = names[len(names)-1]
l.insert(0, (obj, name))
name = None
frame = frame.f_back
return l
def obj_name(obj):
if isinstance(obj, str):
return obj
else:
return obj.__class__.__name__.lower()
class TreeNode:
def __init__(self, name):
self.name = name
self.ids = {}
self.children = []
self.include_context = False
self.include_varname = False
def add_to_tree(root, backtrace):
for step in backtrace:
n = obj_name(step[0])
found = list(filter(lambda x: x.name == n, root.children))
if found:
node = found[0]
else:
node = TreeNode(n)
root.children.append(node)
if not isinstance(step[0], str) and id(step[0]) not in node.ids:
node.ids[id(step[0])] = len(node.ids)
root = node
def build_tree(signals):
t = TreeNode("root")
for signal in signals:
if signal.name_override is None:
add_to_tree(t, signal.backtrace)
return t
def name_backtrace(root, backtrace):
parts = []
for step in backtrace[:-1]:
n = obj_name(step[0])
found = list(filter(lambda x: x.name == n, root.children))
node = found[0]
if node.include_context:
if len(node.ids) > 1:
parts.append(node.name + str(node.ids[id(step[0])]))
else:
parts.append(node.name)
if node.include_varname and step[1] is not None:
parts.append(step[1])
root = node
last = backtrace[-1]
if last[1] is not None:
parts.append(last[1])
else:
parts.append(obj_name(last[0]))
return "_".join(parts)
def _include_divergence(root, bt1, bt2):
for step1, step2 in zip(bt1, bt2):
n1, n2 = obj_name(step1[0]), obj_name(step2[0])
node1 = list(filter(lambda x: x.name == n1, root.children))[0]
node2 = list(filter(lambda x: x.name == n2, root.children))[0]
if node1 != node2:
node1.include_context = True
node2.include_context = True
return
if not isinstance(step1[0], str) and not isinstance(step2[0], str) \
and id(step1[0]) != id(step2[0]):
node1.include_context = True
return
if step1[1] is not None and step2[1] is not None \
and step1[1] != step2[1]:
node1.include_varname = True
return
root = node1
def resolve_conflicts(root, signals):
for s1, s2 in combinations(signals, 2):
if name_backtrace(root, s1.backtrace) == name_backtrace(root, s2.backtrace):
_include_divergence(root, s1.backtrace, s2.backtrace)
def build_tree_res(signals):
t = build_tree(signals)
resolve_conflicts(t, signals)
return t
def signal_name(root, sig):
if sig.name_override is not None:
return sig.name_override
else:
return name_backtrace(root, sig.backtrace)
class Namespace:
def __init__(self, tree):
self.counts = {}
self.sigs = {}
self.tree = tree
def get_name(self, sig):
sig_name = signal_name(self.tree, sig)
try:
n = self.sigs[sig]
if n:
return sig_name + "_" + str(n)
else:
return sig_name
except KeyError:
try:
n = self.counts[sig_name]
except KeyError:
n = 0
self.sigs[sig] = n
self.counts[sig_name] = n + 1
if n:
return sig_name + "_" + str(n)
else:
return sig_name