mirror of
https://github.com/enjoy-digital/litex.git
synced 2025-01-04 09:52:26 -05:00
240 lines
8.3 KiB
Python
240 lines
8.3 KiB
Python
from networkx import MultiDiGraph
|
|
|
|
from migen.fhdl.structure import *
|
|
from migen.corelogic.misc import optree
|
|
from migen.flow.actor import *
|
|
from migen.flow import plumbing
|
|
from migen.flow.isd import DFGReporter
|
|
|
|
# Graph nodes can be either:
|
|
# (1) a reference to an existing actor
|
|
# (2) an abstract (class, dictionary) pair meaning that the actor class should be
|
|
# instantiated with the parameters from the dictionary.
|
|
# This form is needed to enable actor duplication or sharing during elaboration.
|
|
|
|
class ActorNode(HUID):
|
|
def __init__(self, actor_class, parameters=dict()):
|
|
super().__init__()
|
|
if isinstance(actor_class, type):
|
|
self.actor_class = actor_class
|
|
self.parameters = parameters
|
|
else:
|
|
self.actor = actor_class
|
|
self.name = None
|
|
|
|
def is_abstract(self):
|
|
return hasattr(self, "actor_class")
|
|
|
|
def instantiate(self):
|
|
self.actor = self.actor_class(**self.parameters)
|
|
self.actor.name = self.name
|
|
del self.actor_class
|
|
del self.parameters
|
|
|
|
def get_dict(self):
|
|
if self.is_abstract():
|
|
return self.parameters
|
|
else:
|
|
return self.actor.__dict__
|
|
|
|
def __repr__(self):
|
|
if self.is_abstract():
|
|
r = "<abstract " + self.actor_class.__name__
|
|
if self.name is not None:
|
|
r += ": " + self.name
|
|
r += ">"
|
|
else:
|
|
r = repr(self.actor)
|
|
return r
|
|
|
|
class DataFlowGraph(MultiDiGraph):
|
|
def __init__(self):
|
|
self.elaborated = False
|
|
super().__init__()
|
|
|
|
def add_connection(self, source_node, sink_node,
|
|
source_ep=None, sink_ep=None, # default: assume nodes have 1 source/sink and use that one
|
|
source_subr=None, sink_subr=None): # default: use whole record
|
|
assert(isinstance(source_node, ActorNode))
|
|
assert(isinstance(sink_node, ActorNode))
|
|
self.add_edge(source_node, sink_node,
|
|
source=source_ep, sink=sink_ep,
|
|
source_subr=source_subr, sink_subr=sink_subr)
|
|
|
|
def del_connections(self, source_node, sink_node, data_requirements):
|
|
edges_to_delete = []
|
|
edge_data = self.get_edge_data(source_node, sink_node)
|
|
if edge_data is None:
|
|
# the two nodes are already completely disconnected
|
|
return
|
|
for key, data in edge_data.items():
|
|
if all(k not in data_requirements or data_requirements[k] == v
|
|
for k, v in data.items()):
|
|
edges_to_delete.append(key)
|
|
for key in edges_to_delete:
|
|
self.remove_edge(source_node, sink_node, key)
|
|
|
|
# Returns a dictionary
|
|
# source -> [sink1, ..., sinkn]
|
|
# source element is a (node, endpoint) pair.
|
|
# sink elements are (node, endpoint, source subrecord, sink subrecord) triples.
|
|
def _source_to_sinks(self):
|
|
d = dict()
|
|
for u, v, data in self.edges_iter(data=True):
|
|
el_src = (u, data["source"])
|
|
el_dst = (v, data["sink"], data["source_subr"], data["sink_subr"])
|
|
if el_src in d:
|
|
d[el_src].append(el_dst)
|
|
else:
|
|
d[el_src] = [el_dst]
|
|
return d
|
|
|
|
# Returns a dictionary
|
|
# sink -> [source1, ... sourcen]
|
|
# sink element is a (node, endpoint) pair.
|
|
# source elements are (node, endpoint, sink subrecord, source subrecord) triples.
|
|
def _sink_to_sources(self):
|
|
d = dict()
|
|
for u, v, data in self.edges_iter(data=True):
|
|
el_src = (u, data["source"], data["sink_subr"], data["source_subr"])
|
|
el_dst = (v, data["sink"])
|
|
if el_dst in d:
|
|
d[el_dst].append(el_src)
|
|
else:
|
|
d[el_dst] = [el_src]
|
|
return d
|
|
|
|
# List sources that feed more than one sink.
|
|
def _list_divergences(self):
|
|
d = self._source_to_sinks()
|
|
return dict((k, v) for k, v in d.items() if len(v) > 1)
|
|
|
|
# A graph is abstract if any of these conditions is met:
|
|
# (1) A node is an abstract actor.
|
|
# (2) A subrecord is used.
|
|
# (3) A single source feeds more than one sink.
|
|
# NB: It is not allowed for a single sink to be fed by more than one source
|
|
# (except with subrecords, i.e. when a combinator is used)
|
|
def is_abstract(self):
|
|
return any(x.is_abstract() for x in self) \
|
|
or any(d["source_subr"] is not None or d["sink_subr"] is not None
|
|
for u, v, d in self.edges_iter(data=True)) \
|
|
or bool(self._list_divergences())
|
|
|
|
def _eliminate_subrecords_and_divergences(self):
|
|
# Insert combinators.
|
|
for (dst_node, dst_endpoint), sources in self._sink_to_sources().items():
|
|
if len(sources) > 1 or sources[0][2] is not None:
|
|
# build combinator
|
|
# "layout" is filled in during instantiation
|
|
subrecords = [dst_subrecord for src_node, src_endpoint, dst_subrecord, src_subrecord in sources]
|
|
combinator = ActorNode(plumbing.Combinator, {"subrecords": subrecords})
|
|
# disconnect source1 -> sink ... sourcen -> sink
|
|
# connect source1 -> combinator_sink1 ... sourcen -> combinator_sinkn
|
|
for n, (src_node, src_endpoint, dst_subrecord, src_subrecord) in enumerate(sources):
|
|
self.del_connections(src_node, dst_node,
|
|
{"source": src_endpoint, "sink": dst_endpoint})
|
|
self.add_connection(src_node, combinator,
|
|
src_endpoint, "sink{0}".format(n), source_subr=src_subrecord)
|
|
# connect combinator_source -> sink
|
|
self.add_connection(combinator, dst_node, "source", dst_endpoint)
|
|
# Insert splitters.
|
|
for (src_node, src_endpoint), sinks in self._source_to_sinks().items():
|
|
if len(sinks) > 1 or sinks[0][2] is not None:
|
|
subrecords = [src_subrecord for dst_node, dst_endpoint, src_subrecord, dst_subrecord in sinks]
|
|
splitter = ActorNode(plumbing.Splitter, {"subrecords": subrecords})
|
|
# disconnect source -> sink1 ... source -> sinkn
|
|
# connect splitter_source1 -> sink1 ... splitter_sourcen -> sinkn
|
|
for n, (dst_node, dst_endpoint, src_subrecord, dst_subrecord) in enumerate(sinks):
|
|
self.del_connections(src_node, dst_node,
|
|
{"source": src_endpoint, "sink": dst_endpoint})
|
|
self.add_connection(splitter, dst_node,
|
|
"source{0}".format(n), dst_endpoint)
|
|
# connect source -> splitter_sink
|
|
self.add_connection(src_node, splitter, src_endpoint, "sink")
|
|
|
|
def _infer_plumbing_layout(self):
|
|
while True:
|
|
ap = [a for a in self if a.is_abstract() and a.actor_class in plumbing.actors]
|
|
if not ap:
|
|
break
|
|
for a in ap:
|
|
if a.actor_class in plumbing.layout_sink:
|
|
edges = self.in_edges(a, data=True)
|
|
assert(len(edges) == 1)
|
|
other, me, data = edges[0]
|
|
if other.is_abstract():
|
|
continue
|
|
other_ep = data["source"]
|
|
if other_ep is None:
|
|
other_ep = other.actor.single_source()
|
|
elif a.actor_class in plumbing.layout_source:
|
|
edges = self.out_edges(a, data=True)
|
|
assert(len(edges) == 1)
|
|
me, other, data = edges[0]
|
|
if other.is_abstract():
|
|
continue
|
|
other_ep = data["sink"]
|
|
if other_ep is None:
|
|
other_ep = other.actor.single_sink()
|
|
else:
|
|
raise AssertionError
|
|
layout = other.actor.token(other_ep).layout()
|
|
a.parameters["layout"] = layout
|
|
a.instantiate()
|
|
|
|
def _instantiate_actors(self):
|
|
# 1. instantiate all abstract non-plumbing actors
|
|
for actor in self:
|
|
if actor.is_abstract() and actor.actor_class not in plumbing.actors:
|
|
actor.instantiate()
|
|
# 2. infer plumbing layout and instantiate plumbing
|
|
self._infer_plumbing_layout()
|
|
# 3. resolve default eps
|
|
for u, v, d in self.edges_iter(data=True):
|
|
if d["source"] is None:
|
|
d["source"] = u.actor.single_source()
|
|
if d["sink"] is None:
|
|
d["sink"] = v.actor.single_sink()
|
|
|
|
# Elaboration turns an abstract DFG into a physical one.
|
|
# Pass 1: eliminate subrecords and divergences
|
|
# by inserting Combinator/Splitter actors
|
|
# Pass 2: run optimizer (e.g. share and duplicate actors)
|
|
# Pass 3: instantiate all abstract actors and explicit "None" endpoints
|
|
def elaborate(self, optimizer=None):
|
|
if self.elaborated:
|
|
return
|
|
self.elaborated = True
|
|
|
|
self._eliminate_subrecords_and_divergences()
|
|
if optimizer is not None:
|
|
optimizer(self)
|
|
self._instantiate_actors()
|
|
|
|
class CompositeActor(Actor):
|
|
def __init__(self, dfg, debugger=False, debugger_nbits=48):
|
|
dfg.elaborate()
|
|
self.dfg = dfg
|
|
if debugger:
|
|
self.debugger = DFGReporter(self.dfg, debugger_nbits)
|
|
super().__init__()
|
|
|
|
def get_registers(self):
|
|
if hasattr(self, "debugger"):
|
|
return self.debugger.get_registers()
|
|
else:
|
|
return []
|
|
|
|
def get_fragment(self):
|
|
comb = [self.busy.eq(optree("|", [node.actor.busy for node in self.dfg]))]
|
|
fragment = Fragment(comb)
|
|
for node in self.dfg:
|
|
fragment += node.actor.get_fragment()
|
|
for u, v, d in self.dfg.edges_iter(data=True):
|
|
ep_src = u.actor.endpoints[d["source"]]
|
|
ep_dst = v.actor.endpoints[d["sink"]]
|
|
fragment += get_conn_fragment(ep_src, ep_dst)
|
|
if hasattr(self, "debugger"):
|
|
fragment += self.debugger.get_fragment()
|
|
return fragment
|