68 lines
1.8 KiB
Python
68 lines
1.8 KiB
Python
from functools import reduce
|
|
from operator import add
|
|
|
|
from math import cos, pi
|
|
from scipy import signal
|
|
import matplotlib.pyplot as plt
|
|
|
|
from migen import *
|
|
from migen.fhdl import verilog
|
|
|
|
|
|
# A synthesizable FIR filter.
|
|
class FIR(Module):
|
|
def __init__(self, coef, wsize=16):
|
|
self.coef = coef
|
|
self.wsize = wsize
|
|
self.i = Signal((self.wsize, True))
|
|
self.o = Signal((self.wsize, True))
|
|
|
|
###
|
|
|
|
muls = []
|
|
src = self.i
|
|
for c in self.coef:
|
|
sreg = Signal((self.wsize, True))
|
|
self.sync += sreg.eq(src)
|
|
src = sreg
|
|
c_fp = int(c*2**(self.wsize - 1))
|
|
muls.append(c_fp*sreg)
|
|
sum_full = Signal((2*self.wsize-1, True))
|
|
self.sync += sum_full.eq(reduce(add, muls))
|
|
self.comb += self.o.eq(sum_full >> self.wsize-1)
|
|
|
|
|
|
# A test bench for our FIR filter.
|
|
# Generates a sine wave at the input and records the output.
|
|
def fir_tb(dut, frequency, inputs, outputs):
|
|
f = 2**(dut.wsize - 1)
|
|
for cycle in range(200):
|
|
v = 0.1*cos(2*pi*frequency*cycle)
|
|
yield dut.i.eq(int(f*v))
|
|
inputs.append(v)
|
|
outputs.append((yield dut.o)/f)
|
|
yield
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Compute filter coefficients with SciPy.
|
|
coef = signal.remez(30, [0, 0.1, 0.2, 0.4, 0.45, 0.5], [0, 1, 0])
|
|
|
|
# Simulate for different frequencies and concatenate
|
|
# the results.
|
|
in_signals = []
|
|
out_signals = []
|
|
for frequency in [0.05, 0.1, 0.25]:
|
|
dut = FIR(coef)
|
|
tb = fir_tb(dut, frequency, in_signals, out_signals)
|
|
run_simulation(dut, tb)
|
|
|
|
# Plot data from the input and output waveforms.
|
|
plt.plot(in_signals)
|
|
plt.plot(out_signals)
|
|
plt.show()
|
|
|
|
# Print the Verilog source for the filter.
|
|
fir = FIR(coef)
|
|
print(verilog.convert(fir, ios={fir.i, fir.o}))
|