litex/test/test_axi.py
2020-07-22 17:16:33 +02:00

1135 lines
44 KiB
Python

# This file is Copyright (c) 2019 Florent Kermarrec <florent@enjoy-digital.fr>
# License: BSD
import unittest
import random
from migen import *
from litex.soc.interconnect.axi import *
from litex.soc.interconnect import wishbone, csr_bus
# Software Models ----------------------------------------------------------------------------------
class Burst:
def __init__(self, addr, type=BURST_FIXED, len=0, size=0):
self.addr = addr
self.type = type
self.len = len
self.size = size
def to_beats(self):
r = []
for i in range(self.len + 1):
if self.type == BURST_INCR:
offset = i*2**(self.size)
r += [Beat(self.addr + offset)]
elif self.type == BURST_WRAP:
offset = (i*2**(self.size))%((2**self.size)*(self.len + 1))
r += [Beat(self.addr + offset)]
else:
r += [Beat(self.addr)]
return r
class Beat:
def __init__(self, addr):
self.addr = addr
class Access(Burst):
def __init__(self, addr, data, id, **kwargs):
Burst.__init__(self, addr, **kwargs)
self.data = data
self.id = id
class Write(Access):
pass
class Read(Access):
pass
# TestAXI ------------------------------------------------------------------------------------------
class TestAXI(unittest.TestCase):
def test_burst2beat(self):
def bursts_generator(ax, bursts, valid_rand=50):
prng = random.Random(42)
for burst in bursts:
yield ax.valid.eq(1)
yield ax.addr.eq(burst.addr)
yield ax.burst.eq(burst.type)
yield ax.len.eq(burst.len)
yield ax.size.eq(burst.size)
while (yield ax.ready) == 0:
yield
yield ax.valid.eq(0)
while prng.randrange(100) < valid_rand:
yield
yield
@passive
def beats_checker(ax, beats, ready_rand=50):
self.errors = 0
yield ax.ready.eq(0)
prng = random.Random(42)
for beat in beats:
while ((yield ax.valid) and (yield ax.ready)) == 0:
if prng.randrange(100) > ready_rand:
yield ax.ready.eq(1)
else:
yield ax.ready.eq(0)
yield
ax_addr = (yield ax.addr)
if ax_addr != beat.addr:
self.errors += 1
yield
# dut
ax_burst = stream.Endpoint(ax_description(32, 32))
ax_beat = stream.Endpoint(ax_description(32, 32))
dut = AXIBurst2Beat(ax_burst, ax_beat)
# generate dut input (bursts)
prng = random.Random(42)
bursts = []
for i in range(32):
bursts.append(Burst(prng.randrange(2**32), BURST_FIXED, prng.randrange(255), log2_int(32//8)))
bursts.append(Burst(prng.randrange(2**32), BURST_INCR, prng.randrange(255), log2_int(32//8)))
bursts.append(Burst(4, BURST_WRAP, 4-1, log2_int(2)))
# generate expected dut output (beats for reference)
beats = []
for burst in bursts:
beats += burst.to_beats()
# simulation
generators = [
bursts_generator(ax_burst, bursts),
beats_checker(ax_beat, beats)
]
run_simulation(dut, generators)
self.assertEqual(self.errors, 0)
def _test_axi2wishbone(self,
naccesses=16, simultaneous_writes_reads=False,
# random: 0: min (no random), 100: max.
# burst randomness
id_rand_enable = False,
len_rand_enable = False,
data_rand_enable = False,
# flow valid randomness
aw_valid_random = 0,
w_valid_random = 0,
ar_valid_random = 0,
r_valid_random = 0,
# flow ready randomness
w_ready_random = 0,
b_ready_random = 0,
r_ready_random = 0
):
def writes_cmd_generator(axi_port, writes):
prng = random.Random(42)
for write in writes:
while prng.randrange(100) < aw_valid_random:
yield
# send command
yield axi_port.aw.valid.eq(1)
yield axi_port.aw.addr.eq(write.addr<<2)
yield axi_port.aw.burst.eq(write.type)
yield axi_port.aw.len.eq(write.len)
yield axi_port.aw.size.eq(write.size)
yield axi_port.aw.id.eq(write.id)
yield
while (yield axi_port.aw.ready) == 0:
yield
yield axi_port.aw.valid.eq(0)
def writes_data_generator(axi_port, writes):
prng = random.Random(42)
yield axi_port.w.strb.eq(2**(len(axi_port.w.data)//8) - 1)
for write in writes:
for i, data in enumerate(write.data):
while prng.randrange(100) < w_valid_random:
yield
# send data
yield axi_port.w.valid.eq(1)
if (i == (len(write.data) - 1)):
yield axi_port.w.last.eq(1)
else:
yield axi_port.w.last.eq(0)
yield axi_port.w.data.eq(data)
yield
while (yield axi_port.w.ready) == 0:
yield
yield axi_port.w.valid.eq(0)
axi_port.reads_enable = True
def writes_response_generator(axi_port, writes):
prng = random.Random(42)
self.writes_id_errors = 0
for write in writes:
# wait response
yield axi_port.b.ready.eq(0)
yield
while (yield axi_port.b.valid) == 0:
yield
while prng.randrange(100) < b_ready_random:
yield
yield axi_port.b.ready.eq(1)
yield
if (yield axi_port.b.id) != write.id:
self.writes_id_errors += 1
def reads_cmd_generator(axi_port, reads):
prng = random.Random(42)
while not axi_port.reads_enable:
yield
for read in reads:
while prng.randrange(100) < ar_valid_random:
yield
# send command
yield axi_port.ar.valid.eq(1)
yield axi_port.ar.addr.eq(read.addr<<2)
yield axi_port.ar.burst.eq(read.type)
yield axi_port.ar.len.eq(read.len)
yield axi_port.ar.size.eq(read.size)
yield axi_port.ar.id.eq(read.id)
yield
while (yield axi_port.ar.ready) == 0:
yield
yield axi_port.ar.valid.eq(0)
def reads_response_data_generator(axi_port, reads):
prng = random.Random(42)
self.reads_data_errors = 0
self.reads_id_errors = 0
self.reads_last_errors = 0
while not axi_port.reads_enable:
yield
for read in reads:
for i, data in enumerate(read.data):
# wait data / response
yield axi_port.r.ready.eq(0)
yield
while (yield axi_port.r.valid) == 0:
yield
while prng.randrange(100) < r_ready_random:
yield
yield axi_port.r.ready.eq(1)
yield
if (yield axi_port.r.data) != data:
self.reads_data_errors += 1
if (yield axi_port.r.id) != read.id:
self.reads_id_errors += 1
if i == (len(read.data) - 1):
if (yield axi_port.r.last) != 1:
self.reads_last_errors += 1
else:
if (yield axi_port.r.last) != 0:
self.reads_last_errors += 1
# dut
class DUT(Module):
def __init__(self):
self.axi = AXIInterface(data_width=32, address_width=32, id_width=8)
self.wishbone = wishbone.Interface(data_width=32)
axi2wishbone = AXI2Wishbone(self.axi, self.wishbone)
self.submodules += axi2wishbone
wishbone_mem = wishbone.SRAM(1024, bus=self.wishbone)
self.submodules += wishbone_mem
dut = DUT()
# generate writes/reads
prng = random.Random(42)
writes = []
offset = 1
for i in range(naccesses):
_id = prng.randrange(2**8) if id_rand_enable else i
_len = prng.randrange(32) if len_rand_enable else i
_data = [prng.randrange(2**32) if data_rand_enable else j for j in range(_len + 1)]
writes.append(Write(offset, _data, _id, type=BURST_INCR, len=_len, size=log2_int(32//8)))
offset += _len + 1
# dummy reads to ensure datas have been written before the effective reads start.
dummy_reads = [Read(1023, [0], 0, type=BURST_FIXED, len=0, size=log2_int(32//8)) for _ in range(32)]
reads = writes
# simulation
if simultaneous_writes_reads:
dut.axi.reads_enable = True
else:
dut.axi.reads_enable = False # will be set by writes_data_generator
generators = [
writes_cmd_generator(dut.axi, writes),
writes_data_generator(dut.axi, writes),
writes_response_generator(dut.axi, writes),
reads_cmd_generator(dut.axi, reads),
reads_response_data_generator(dut.axi, reads)
]
run_simulation(dut, generators)
self.assertEqual(self.writes_id_errors, 0)
self.assertEqual(self.reads_data_errors, 0)
self.assertEqual(self.reads_id_errors, 0)
self.assertEqual(self.reads_last_errors, 0)
# test with no randomness
def test_axi2wishbone_writes_then_reads_no_random(self):
self._test_axi2wishbone(simultaneous_writes_reads=False)
# test randomness one parameter at a time
def test_axi2wishbone_writes_then_reads_random_bursts(self):
self._test_axi2wishbone(
simultaneous_writes_reads = False,
id_rand_enable = True,
len_rand_enable = True,
data_rand_enable = True)
def test_axi2wishbone_random_w_ready(self):
self._test_axi2wishbone(w_ready_random=90)
def test_axi2wishbone_random_b_ready(self):
self._test_axi2wishbone(b_ready_random=90)
def test_axi2wishbone_random_r_ready(self):
self._test_axi2wishbone(r_ready_random=90)
def test_axi2wishbone_random_aw_valid(self):
self._test_axi2wishbone(aw_valid_random=90)
def test_axi2wishbone_random_w_valid(self):
self._test_axi2wishbone(w_valid_random=90)
def test_axi2wishbone_random_ar_valid(self):
self._test_axi2wishbone(ar_valid_random=90)
def test_axi2wishbone_random_r_valid(self):
self._test_axi2wishbone(r_valid_random=90)
# now let's stress things a bit... :)
def test_axi2wishbone_random_all(self):
self._test_axi2wishbone(
simultaneous_writes_reads = False,
id_rand_enable = True,
len_rand_enable = True,
aw_valid_random = 50,
w_ready_random = 50,
b_ready_random = 50,
w_valid_random = 50,
ar_valid_random = 90,
r_valid_random = 90,
r_ready_random = 90
)
# TestAXILite --------------------------------------------------------------------------------------
def _int_or_call(int_or_func):
if callable(int_or_func):
return int_or_func()
return int_or_func
class AXILiteChecker:
def __init__(self, ready_latency=0, response_latency=0, rdata_generator=None):
self.ready_latency = ready_latency
self.response_latency = response_latency
self.rdata_generator = rdata_generator or (lambda adr: 0xbaadc0de)
self.writes = [] # (addr, data, strb)
self.reads = [] # (addr, data)
def delay(self, latency):
for _ in range(_int_or_call(latency)):
yield
def handle_write(self, axi_lite):
# aw
while not (yield axi_lite.aw.valid):
yield
yield from self.delay(self.ready_latency)
addr = (yield axi_lite.aw.addr)
yield axi_lite.aw.ready.eq(1)
yield
yield axi_lite.aw.ready.eq(0)
while not (yield axi_lite.w.valid):
yield
yield from self.delay(self.ready_latency)
# w
data = (yield axi_lite.w.data)
strb = (yield axi_lite.w.strb)
yield axi_lite.w.ready.eq(1)
yield
yield axi_lite.w.ready.eq(0)
yield from self.delay(self.response_latency)
# b
yield axi_lite.b.valid.eq(1)
yield axi_lite.b.resp.eq(RESP_OKAY)
yield
while not (yield axi_lite.b.ready):
yield
yield axi_lite.b.valid.eq(0)
self.writes.append((addr, data, strb))
def handle_read(self, axi_lite):
# ar
while not (yield axi_lite.ar.valid):
yield
yield from self.delay(self.ready_latency)
addr = (yield axi_lite.ar.addr)
yield axi_lite.ar.ready.eq(1)
yield
yield axi_lite.ar.ready.eq(0)
yield from self.delay(self.response_latency)
# r
data = self.rdata_generator(addr)
yield axi_lite.r.valid.eq(1)
yield axi_lite.r.resp.eq(RESP_OKAY)
yield axi_lite.r.data.eq(data)
yield
while not (yield axi_lite.r.ready):
yield
yield axi_lite.r.valid.eq(0)
yield axi_lite.r.data.eq(0)
self.reads.append((addr, data))
@passive
def handler(self, axi_lite):
while True:
if (yield axi_lite.aw.valid):
yield from self.handle_write(axi_lite)
if (yield axi_lite.ar.valid):
yield from self.handle_read(axi_lite)
yield
@passive
def timeout_generator(ticks):
import os
for i in range(ticks):
if os.environ.get("TIMEOUT_DEBUG", "") == "1":
print("tick {}".format(i))
yield
raise TimeoutError("Timeout after %d ticks" % ticks)
class TestAXILite(unittest.TestCase):
def test_wishbone2axi2wishbone(self):
class DUT(Module):
def __init__(self):
self.wishbone = wishbone.Interface(data_width=32)
# # #
axi = AXILiteInterface(data_width=32, address_width=32)
wb = wishbone.Interface(data_width=32)
wishbone2axi = Wishbone2AXILite(self.wishbone, axi)
axi2wishbone = AXILite2Wishbone(axi, wb)
self.submodules += wishbone2axi, axi2wishbone
sram = wishbone.SRAM(1024, init=[0x12345678, 0xa55aa55a])
self.submodules += sram
self.comb += wb.connect(sram.bus)
def generator(dut):
dut.errors = 0
if (yield from dut.wishbone.read(0)) != 0x12345678:
dut.errors += 1
if (yield from dut.wishbone.read(1)) != 0xa55aa55a:
dut.errors += 1
for i in range(32):
yield from dut.wishbone.write(i, i)
for i in range(32):
if (yield from dut.wishbone.read(i)) != i:
dut.errors += 1
dut = DUT()
run_simulation(dut, [generator(dut)])
self.assertEqual(dut.errors, 0)
def test_axilite2csr(self):
@passive
def csr_mem_handler(csr, mem):
while True:
adr = (yield csr.adr)
yield csr.dat_r.eq(mem[adr])
if (yield csr.we):
mem[adr] = (yield csr.dat_w)
yield
class DUT(Module):
def __init__(self):
self.axi_lite = AXILiteInterface()
self.csr = csr_bus.Interface()
self.submodules.axilite2csr = AXILite2CSR(self.axi_lite, self.csr)
self.errors = 0
prng = random.Random(42)
mem_ref = [prng.randrange(255) for i in range(100)]
def generator(dut):
dut.errors = 0
for adr, ref in enumerate(mem_ref):
adr = adr << 2
data, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if data != ref:
dut.errors += 1
write_data = [prng.randrange(255) for _ in mem_ref]
for adr, wdata in enumerate(write_data):
adr = adr << 2
resp = (yield from dut.axi_lite.write(adr, wdata))
self.assertEqual(resp, 0b00)
rdata, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if rdata != wdata:
dut.errors += 1
dut = DUT()
mem = [v for v in mem_ref]
run_simulation(dut, [generator(dut), csr_mem_handler(dut.csr, mem)])
self.assertEqual(dut.errors, 0)
def test_axilite_sram(self):
class DUT(Module):
def __init__(self, size, init):
self.axi_lite = AXILiteInterface()
self.submodules.sram = AXILiteSRAM(size, init=init, bus=self.axi_lite)
self.errors = 0
def generator(dut, ref_init):
for adr, ref in enumerate(ref_init):
adr = adr << 2
data, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if data != ref:
dut.errors += 1
write_data = [prng.randrange(255) for _ in ref_init]
for adr, wdata in enumerate(write_data):
adr = adr << 2
resp = (yield from dut.axi_lite.write(adr, wdata))
self.assertEqual(resp, 0b00)
rdata, resp = (yield from dut.axi_lite.read(adr))
self.assertEqual(resp, 0b00)
if rdata != wdata:
dut.errors += 1
prng = random.Random(42)
init = [prng.randrange(2**32) for i in range(100)]
dut = DUT(size=len(init)*4, init=[v for v in init])
run_simulation(dut, [generator(dut, init)])
self.assertEqual(dut.errors, 0)
def converter_test(self, width_from, width_to,
write_pattern=None, write_expected=None,
read_pattern=None, read_expected=None):
assert not (write_pattern is None and read_pattern is None)
if write_pattern is None:
write_pattern = []
write_expected = []
elif len(write_pattern[0]) == 2:
# add w.strb
write_pattern = [(adr, data, 2**(width_from//8)-1) for adr, data in write_pattern]
if read_pattern is None:
read_pattern = []
read_expected = []
class DUT(Module):
def __init__(self, width_from, width_to):
self.master = AXILiteInterface(data_width=width_from)
self.slave = AXILiteInterface(data_width=width_to)
self.submodules.converter = AXILiteConverter(self.master, self.slave)
def generator(axi_lite):
for addr, data, strb in write_pattern or []:
resp = (yield from axi_lite.write(addr, data, strb))
self.assertEqual(resp, RESP_OKAY)
for _ in range(16):
yield
for addr, refdata in read_pattern or []:
data, resp = (yield from axi_lite.read(addr))
self.assertEqual(resp, RESP_OKAY)
self.assertEqual(data, refdata)
for _ in range(4):
yield
def rdata_generator(adr):
for a, v in read_expected:
if a == adr:
return v
return 0xbaadc0de
_latency = 0
def latency():
nonlocal _latency
_latency = (_latency + 1) % 3
return _latency
dut = DUT(width_from=width_from, width_to=width_to)
checker = AXILiteChecker(ready_latency=latency, rdata_generator=rdata_generator)
run_simulation(dut, [generator(dut.master), checker.handler(dut.slave)])
self.assertEqual(checker.writes, write_expected)
self.assertEqual(checker.reads, read_expected)
def test_axilite_down_converter_32to16(self):
write_pattern = [
(0x00000000, 0x22221111),
(0x00000004, 0x44443333),
(0x00000008, 0x66665555),
(0x00000100, 0x88887777),
]
write_expected = [
(0x00000000, 0x1111, 0b11),
(0x00000002, 0x2222, 0b11),
(0x00000004, 0x3333, 0b11),
(0x00000006, 0x4444, 0b11),
(0x00000008, 0x5555, 0b11),
(0x0000000a, 0x6666, 0b11),
(0x00000100, 0x7777, 0b11),
(0x00000102, 0x8888, 0b11),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
self.converter_test(width_from=32, width_to=16,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_32to8(self):
write_pattern = [
(0x00000000, 0x44332211),
(0x00000004, 0x88776655),
]
write_expected = [
(0x00000000, 0x11, 0b1),
(0x00000001, 0x22, 0b1),
(0x00000002, 0x33, 0b1),
(0x00000003, 0x44, 0b1),
(0x00000004, 0x55, 0b1),
(0x00000005, 0x66, 0b1),
(0x00000006, 0x77, 0b1),
(0x00000007, 0x88, 0b1),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
self.converter_test(width_from=32, width_to=8,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_64to32(self):
write_pattern = [
(0x00000000, 0x2222222211111111),
(0x00000008, 0x4444444433333333),
]
write_expected = [
(0x00000000, 0x11111111, 0b1111),
(0x00000004, 0x22222222, 0b1111),
(0x00000008, 0x33333333, 0b1111),
(0x0000000c, 0x44444444, 0b1111),
]
read_pattern = write_pattern
read_expected = [(adr, data) for (adr, data, _) in write_expected]
self.converter_test(width_from=64, width_to=32,
write_pattern=write_pattern, write_expected=write_expected,
read_pattern=read_pattern, read_expected=read_expected)
def test_axilite_down_converter_strb(self):
write_pattern = [
(0x00000000, 0x22221111, 0b1100),
(0x00000004, 0x44443333, 0b1111),
(0x00000008, 0x66665555, 0b1011),
(0x00000100, 0x88887777, 0b0011),
]
write_expected = [
(0x00000002, 0x2222, 0b11),
(0x00000004, 0x3333, 0b11),
(0x00000006, 0x4444, 0b11),
(0x00000008, 0x5555, 0b11),
(0x0000000a, 0x6666, 0b10),
(0x00000100, 0x7777, 0b11),
]
self.converter_test(width_from=32, width_to=16,
write_pattern=write_pattern, write_expected=write_expected)
# TestAXILiteInterconnet ---------------------------------------------------------------------------
class AXILitePatternGenerator:
def __init__(self, axi_lite, pattern, delay=0):
self.axi_lite = axi_lite
self.pattern = pattern
self.delay = delay
self.errors = 0
self.read_errors = []
self.resp_errors = {"w": 0, "r": 0}
def handler(self):
for rw, addr, data in self.pattern:
assert rw in ["w", "r"]
if rw == "w":
strb = 2**len(self.axi_lite.w.strb) - 1
resp = (yield from self.axi_lite.write(addr, data, strb))
else:
rdata, resp = (yield from self.axi_lite.read(addr))
if rdata != data:
self.read_errors.append((rdata, data))
self.errors += 1
if resp != RESP_OKAY:
self.resp_errors[rw] += 1
self.errors += 1
for _ in range(_int_or_call(self.delay)):
yield
for _ in range(16):
yield
class TestAXILiteInterconnect(unittest.TestCase):
def test_interconnect_p2p(self):
class DUT(Module):
def __init__(self):
self.master = master = AXILiteInterface()
self.slave = slave = AXILiteInterface()
self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave)
pattern = [
("w", 0x00000004, 0x11111111),
("w", 0x0000000c, 0x22222222),
("r", 0x00000010, 0x33333333),
("r", 0x00000018, 0x44444444),
]
def rdata_generator(adr):
for rw, a, v in pattern:
if rw == "r" and a == adr:
return v
return 0xbaadc0de
dut = DUT()
checker = AXILiteChecker(rdata_generator=rdata_generator)
generators = [
AXILitePatternGenerator(dut.master, pattern).handler(),
checker.handler(dut.slave),
]
run_simulation(dut, generators)
self.assertEqual(checker.writes, [(addr, data, 0b1111) for rw, addr, data in pattern if rw == "w"])
self.assertEqual(checker.reads, [(addr, data) for rw, addr, data in pattern if rw == "r"])
def test_timeout(self):
class DUT(Module):
def __init__(self):
self.master = master = AXILiteInterface()
self.slave = slave = AXILiteInterface()
self.submodules.interconnect = AXILiteInterconnectPointToPoint(master, slave)
self.submodules.timeout = AXILiteTimeout(master, 16)
def generator(axi_lite):
resp = (yield from axi_lite.write(0x00001000, 0x11111111))
self.assertEqual(resp, RESP_OKAY)
resp = (yield from axi_lite.write(0x00002000, 0x22222222))
self.assertEqual(resp, RESP_SLVERR)
data, resp = (yield from axi_lite.read(0x00003000))
self.assertEqual(resp, RESP_SLVERR)
self.assertEqual(data, 0xffffffff)
yield
def checker(axi_lite):
for _ in range(16):
yield
yield axi_lite.aw.ready.eq(1)
yield axi_lite.w.ready.eq(1)
yield
yield axi_lite.aw.ready.eq(0)
yield axi_lite.w.ready.eq(0)
yield axi_lite.b.valid.eq(1)
yield
while not (yield axi_lite.b.ready):
yield
yield axi_lite.b.valid.eq(0)
dut = DUT()
generators = [
generator(dut.master),
checker(dut.slave),
timeout_generator(300),
]
run_simulation(dut, generators)
def test_arbiter_order(self):
class DUT(Module):
def __init__(self, n_masters):
self.masters = [AXILiteInterface() for _ in range(n_masters)]
self.slave = AXILiteInterface()
self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave)
def generator(n, axi_lite, delay=0):
def gen(i):
return 100*n + i
for i in range(4):
resp = (yield from axi_lite.write(gen(i), gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for i in range(4):
data, resp = (yield from axi_lite.read(gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for _ in range(8):
yield
n_masters = 3
# with no delay each master will do all transfers at once
with self.subTest(delay=0):
dut = DUT(n_masters)
checker = AXILiteChecker()
generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
# with some delay, the round-robin arbiter will iterate over masters
with self.subTest(delay=1):
dut = DUT(n_masters)
checker = AXILiteChecker()
generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
def test_arbiter_holds_grant_until_response(self):
class DUT(Module):
def __init__(self, n_masters):
self.masters = [AXILiteInterface() for _ in range(n_masters)]
self.slave = AXILiteInterface()
self.submodules.arbiter = AXILiteArbiter(self.masters, self.slave)
def generator(n, axi_lite, delay=0):
def gen(i):
return 100*n + i
for i in range(4):
resp = (yield from axi_lite.write(gen(i), gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for i in range(4):
data, resp = (yield from axi_lite.read(gen(i)))
self.assertEqual(resp, RESP_OKAY)
for _ in range(delay):
yield
for _ in range(8):
yield
n_masters = 3
# with no delay each master will do all transfers at once
with self.subTest(delay=0):
dut = DUT(n_masters)
checker = AXILiteChecker(response_latency=lambda: 3)
generators = [generator(i, master, delay=0) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 1, 2, 3, 100, 101, 102, 103, 200, 201, 202, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
# with some delay, the round-robin arbiter will iterate over masters
with self.subTest(delay=1):
dut = DUT(n_masters)
checker = AXILiteChecker(response_latency=lambda: 3)
generators = [generator(i, master, delay=1) for i, master in enumerate(dut.masters)]
generators += [timeout_generator(300), checker.handler(dut.slave)]
run_simulation(dut, generators)
order = [0, 100, 200, 1, 101, 201, 2, 102, 202, 3, 103, 203]
self.assertEqual([addr for addr, data, strb in checker.writes], order)
self.assertEqual([addr for addr, data in checker.reads], order)
def address_decoder(self, i, size=0x100, python=False):
# bytes to 32-bit words aligned
_size = (size) >> 2
_origin = (size * i) >> 2
if python: # for python integers
shift = log2_int(_size)
return lambda a: ((a >> shift) == (_origin >> shift))
# for migen signals
return lambda a: (a[log2_int(_size):] == (_origin >> log2_int(_size)))
def decoder_test(self, n_slaves, pattern, generator_delay=0):
class DUT(Module):
def __init__(self, decoders):
self.master = AXILiteInterface()
self.slaves = [AXILiteInterface() for _ in range(len(decoders))]
slaves = list(zip(decoders, self.slaves))
self.submodules.decoder = AXILiteDecoder(self.master, slaves)
def rdata_generator(adr):
for rw, a, v in pattern:
if rw == "r" and a == adr:
return v
return 0xbaadc0de
dut = DUT([self.address_decoder(i) for i in range(n_slaves)])
checkers = [AXILiteChecker(rdata_generator=rdata_generator) for _ in dut.slaves]
generators = [AXILitePatternGenerator(dut.master, pattern, delay=generator_delay).handler()]
generators += [checker.handler(slave) for (slave, checker) in zip(dut.slaves, checkers)]
generators += [timeout_generator(300)]
run_simulation(dut, generators)
return checkers
def test_decoder_write(self):
for delay in [0, 1, 0]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("w", 0x010, 1),
("w", 0x110, 2),
("w", 0x210, 3),
("w", 0x011, 1),
("w", 0x012, 1),
("w", 0x111, 2),
("w", 0x112, 2),
("w", 0x211, 3),
("w", 0x212, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].writes), [0x010, 0x011, 0x012])
self.assertEqual(addr(slaves[1].writes), [0x110, 0x111, 0x112])
self.assertEqual(addr(slaves[2].writes), [0x210, 0x211, 0x212])
for slave in slaves:
self.assertEqual(slave.reads, [])
def test_decoder_read(self):
for delay in [0, 1]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("r", 0x010, 1),
("r", 0x110, 2),
("r", 0x210, 3),
("r", 0x011, 1),
("r", 0x012, 1),
("r", 0x111, 2),
("r", 0x112, 2),
("r", 0x211, 3),
("r", 0x212, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].reads), [0x010, 0x011, 0x012])
self.assertEqual(addr(slaves[1].reads), [0x110, 0x111, 0x112])
self.assertEqual(addr(slaves[2].reads), [0x210, 0x211, 0x212])
for slave in slaves:
self.assertEqual(slave.writes, [])
def test_decoder_read_write(self):
for delay in [0, 1]:
with self.subTest(delay=delay):
slaves = self.decoder_test(n_slaves=3, pattern=[
("w", 0x010, 1),
("w", 0x110, 2),
("r", 0x111, 2),
("r", 0x011, 1),
("r", 0x211, 3),
("w", 0x210, 3),
], generator_delay=delay)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(slaves[0].writes), [0x010])
self.assertEqual(addr(slaves[0].reads), [0x011])
self.assertEqual(addr(slaves[1].writes), [0x110])
self.assertEqual(addr(slaves[1].reads), [0x111])
self.assertEqual(addr(slaves[2].writes), [0x210])
self.assertEqual(addr(slaves[2].reads), [0x211])
def test_decoder_stall(self):
with self.assertRaises(TimeoutError):
self.decoder_test(n_slaves=3, pattern=[
("w", 0x300, 1),
])
with self.assertRaises(TimeoutError):
self.decoder_test(n_slaves=3, pattern=[
("r", 0x300, 1),
])
def interconnect_test(self, master_patterns, slave_decoders,
master_delay=0, slave_ready_latency=0, slave_response_latency=0,
disconnected_slaves=None, timeout=300, interconnect=AXILiteInterconnectShared,
**kwargs):
# number of masters/slaves is defined by the number of patterns/decoders
# master_patterns: list of patterns per master, pattern = list(tuple(rw, addr, data))
# slave_decoders: list of address decoders per slave
# delay/latency: control the speed of masters/slaves
# disconnected_slaves: list of slave numbers that shouldn't respond to any transactions
class DUT(Module):
def __init__(self, n_masters, decoders, **kwargs):
self.masters = [AXILiteInterface(name="master") for _ in range(n_masters)]
self.slaves = [AXILiteInterface(name="slave") for _ in range(len(decoders))]
slaves = list(zip(decoders, self.slaves))
self.submodules.interconnect = interconnect(self.masters, slaves, **kwargs)
class ReadDataGenerator:
# Generates data based on decoded addresses and data defined in master_patterns
def __init__(self, patterns):
self.mem = {}
for pattern in patterns:
for rw, addr, val in pattern:
if rw == "r":
assert addr not in self.mem
self.mem[addr] = val
def getter(self, n):
# on miss will give default data depending on slave n
return lambda addr: self.mem.get(addr, 0xbaad0000 + n)
def new_checker(rdata_generator):
return AXILiteChecker(ready_latency=slave_ready_latency,
response_latency=slave_response_latency,
rdata_generator=rdata_generator)
# perpare test
dut = DUT(len(master_patterns), slave_decoders, **kwargs)
rdata_generator = ReadDataGenerator(master_patterns)
checkers = [new_checker(rdata_generator.getter(i)) for i, _ in enumerate(master_patterns)]
pattern_generators = [AXILitePatternGenerator(dut.masters[i], pattern, delay=master_delay)
for i, pattern in enumerate(master_patterns)]
# run simulator
generators = [gen.handler() for gen in pattern_generators]
generators += [checker.handler(slave)
for i, (slave, checker) in enumerate(zip(dut.slaves, checkers))
if i not in (disconnected_slaves or [])]
generators += [timeout_generator(timeout)]
run_simulation(dut, generators, vcd_name='sim.vcd')
return pattern_generators, checkers
def test_interconnect_shared_basic(self):
master_patterns = [
[("w", 0x000, 0), ("w", 0x101, 0), ("w", 0x202, 0)],
[("w", 0x010, 0), ("w", 0x111, 0), ("w", 0x112, 0)],
[("w", 0x220, 0), ("w", 0x221, 0), ("w", 0x222, 0)],
]
slave_decoders = [self.address_decoder(i) for i in range(3)]
generators, checkers = self.interconnect_test(master_patterns, slave_decoders,
master_delay=1)
for gen in generators:
self.assertEqual(gen.errors, 0)
def addr(checker_list):
return [entry[0] for entry in checker_list]
self.assertEqual(addr(checkers[0].writes), [0x000, 0x010])
self.assertEqual(addr(checkers[1].writes), [0x101, 0x111, 0x112])
self.assertEqual(addr(checkers[2].writes), [0x220, 0x221, 0x202, 0x222])
self.assertEqual(addr(checkers[0].reads), [])
self.assertEqual(addr(checkers[1].reads), [])
self.assertEqual(addr(checkers[2].reads), [])
def interconnect_stress_test(self, timeout=1000, **kwargs):
prng = random.Random(42)
n_masters = 3
n_slaves = 3
pattern_length = 64
slave_region_size = 0x10000000
# for testing purpose each master will access only its own region of a slave
master_region_size = 0x1000
assert n_masters*master_region_size < slave_region_size
def gen_pattern(n, length):
assert length < master_region_size
for i_access in range(length):
rw = "w" if prng.randint(0, 1) == 0 else "r"
i_slave = prng.randrange(n_slaves)
addr = i_slave*slave_region_size + n*master_region_size + i_access
data = addr
yield rw, addr, data
master_patterns = [list(gen_pattern(i, pattern_length)) for i in range(n_masters)]
slave_decoders = [self.address_decoder(i, size=slave_region_size) for i in range(n_slaves)]
slave_decoders_py = [self.address_decoder(i, size=slave_region_size, python=True)
for i in range(n_slaves)]
generators, checkers = self.interconnect_test(master_patterns, slave_decoders,
timeout=timeout, **kwargs)
for gen in generators:
read_errors = [" 0x{:08x} vs 0x{:08x}".format(v, ref) for v, ref in gen.read_errors]
msg = "\ngen.resp_errors = {}\ngen.read_errors = \n{}".format(
gen.resp_errors, "\n".join(read_errors))
if not kwargs.get("disconnected_slaves", None):
self.assertEqual(gen.errors, 0, msg=msg)
else: # when some slaves are disconnected we should have some errors
self.assertNotEqual(gen.errors, 0, msg=msg)
# make sure all the accesses at slave side are in correct address region
for i_slave, (checker, decoder) in enumerate(zip(checkers, slave_decoders_py)):
for addr in (entry[0] for entry in checker.writes + checker.reads):
# compensate for the fact that decoders work on word-aligned addresses
self.assertNotEqual(decoder(addr >> 2), 0)
def test_interconnect_shared_stress_no_delay(self):
self.interconnect_stress_test(timeout=1000,
master_delay=0,
slave_ready_latency=0,
slave_response_latency=0)
def test_interconnect_shared_stress_rand_short(self):
prng = random.Random(42)
rand = lambda: prng.randrange(4)
self.interconnect_stress_test(timeout=2000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand)
def test_interconnect_shared_stress_rand_long(self):
prng = random.Random(42)
rand = lambda: prng.randrange(16)
self.interconnect_stress_test(timeout=4000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand)
def test_interconnect_shared_stress_timeout(self):
self.interconnect_stress_test(timeout=4000,
disconnected_slaves=[1],
timeout_cycles=50)
def test_crossbar_stress_no_delay(self):
self.interconnect_stress_test(timeout=1000,
master_delay=0,
slave_ready_latency=0,
slave_response_latency=0,
interconnect=AXILiteCrossbar)
def test_crossbar_stress_rand(self):
prng = random.Random(42)
rand = lambda: prng.randrange(4)
self.interconnect_stress_test(timeout=2000,
master_delay=rand,
slave_ready_latency=rand,
slave_response_latency=rand,
interconnect=AXILiteCrossbar)