litex/migen/genlib/mhamgen.py
2015-04-13 20:07:07 +02:00

232 lines
7.7 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2014 Guy Hutchison
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import migen
import operator
from migen.fhdl.std import *
from migen.fhdl.verilog import convert
# Join two lists a and b, such that redundant terms are removed
def join_lists(a, b):
z = []
for x in a+b:
if x not in z:
z.append(x)
else:
z.remove(x)
return z
def join_operator(list, op):
if len(list) == 0:
return []
elif len(list) == 1:
return list[0]
elif len(list) == 2:
return op(list[0], list[1])
else:
return op(list[0], join_operator(list[1:], op))
def calc_code_bits(data_bits):
m = 1
c = 0
while c < data_bits:
m += 1
c = 2**m - m - 1
return m
# build_seq() is used to create the selection of bits which need
# to be checked for a particular data parity bit.
def build_seq(bnum, out_width):
tmp = []
ptr = 0
cur = 0
skip = 2**bnum-1
if skip == 0:
check = 2**bnum
else:
check = 0
while cur < out_width:
if check > 0:
if (cur != 2**bnum-1):
tmp.append(cur)
ptr += 1
check -= 1
if check == 0:
skip = 2**bnum
else:
skip -= 1
if skip == 0:
check = 2**bnum
cur += 1
return tmp
# build_bits() is used for the generator portion, it combines the
# bit sequences for all input and parity bits which are used and
# removes redundant terms.
def build_bits(in_width, gen_parity=True):
pnum = 1
innum = 0
blist = []
num_code_bits = calc_code_bits(in_width)
out_width = in_width + num_code_bits
v = [list()] * out_width
code_bit_list = []
for b in range(out_width):
if (b+1) == pnum:
pnum = 2*pnum
else:
v[b] = [innum]
innum += 1
for b in range(num_code_bits):
vindex = 2**b-1
blist = build_seq(b, out_width)
for bli in blist:
v[vindex] = join_lists(v[vindex], v[bli])
code_bit_list.append(v[vindex])
# Calculate parity bit
if gen_parity:
pbit = []
for b in v:
pbit = join_lists(pbit, b)
code_bit_list.append(pbit)
return code_bit_list
# xor_tree() takes a signal and a list of bits to be applied from
# the signal and generates a balanced xor tree as output.
def xor_tree(in_signal, in_bits):
if len(in_bits) == 0:
print ("ERROR: in_bits must be > 0")
elif len(in_bits) == 1:
return in_signal[in_bits[0]]
elif len(in_bits) == 2:
return in_signal[in_bits[0]] ^ in_signal[in_bits[1]]
elif len(in_bits) == 3:
return in_signal[in_bits[0]] ^ in_signal[in_bits[1]] ^ in_signal[in_bits[2]]
else:
split = int(len(in_bits)/2)
return xor_tree(in_signal, in_bits[0:split]) ^ xor_tree(in_signal, in_bits[split:])
# Base class for Hamming code generator/checker.
# Hamming code generator class
# The class constructor takes a single required input, which is the number of
# bits of the input data. The module creates a single output, which is a set
# of code check bits and a parity bit.
# This generator and its corresponding checker will only generate a single-
# error correct, double-error detect code. If double-error detection is
# not desired, the most-significant code_out bit can be left unconnected.
# If generated as a top-level module, contains its suggested module name
# in self.name and list of ports in self.ports
class HammingGenerator(Module):
def __init__(self, input_size):
self.input_size = input_size
self.data_in = Signal(input_size)
self.code_out = Signal(calc_code_bits(input_size)+1)
xor_bits = build_bits(self.input_size)
for b in range(len(xor_bits)):
self.comb += self.code_out[b].eq(xor_tree(self.data_in, xor_bits[b]))
# Hamming code checker class
# Constructor takes two parameters:
# input_size (bits of data bus, not counting check bits)
# correct (boolean, True if output data should be corrected)
# If used as a check/correct module, the module creates an
# enable input which can dynamically turn off error correction
# for debug.
# If double-bit detection is not desired, the most-significant
# code_in bit can be tied to 0, and the dberr output port left
# unconnected.
# If generated as a top-level module, contains its suggested module name
# in self.name and list of ports in self.ports
class HammingChecker(Module):
def __init__(self, input_size, correct=True, gen_parity=True):
self.input_size = input_size
self.correct = correct
self.data_in = Signal(input_size)
self.code_bits = calc_code_bits(input_size)
self.code_in = Signal(self.code_bits+1)
self.code_out = Signal(self.code_bits)
self.sberr = Signal()
if gen_parity:
self.dberr = Signal()
# vector of which interleaved bit position represents a particular
# data bit, used for error correction
dbits = []
# Create interleaved vector of code bits and data bits with code bits
# in power-of-two positions
pnum = 0
dnum = 0
self.par_vec = Signal(input_size+self.code_bits)
for b in range(input_size+calc_code_bits(input_size)):
if b+1 == 2**pnum:
self.comb += self.par_vec[b].eq(self.code_in[pnum])
pnum += 1
else:
self.comb += self.par_vec[b].eq(self.data_in[dnum])
dbits.append(b)
dnum += 1
if correct:
self.enable = Signal()
self.correct_out = Signal(input_size)
self.data_out = Signal(input_size, name='data_out')
for b in range(input_size):
self.comb += self.correct_out[b].eq((self.code_out == (dbits[b]+1)) ^ self.data_in[b])
self.comb += If(self.enable, self.data_out.eq(self.correct_out)).Else(self.data_out.eq(self.data_in))
self.comb += self.sberr.eq(self.code_out != 0)
if gen_parity:
parity = Signal()
self.comb += parity.eq(xor_tree(self.data_in, range(input_size)) ^ xor_tree(self.code_in, range(self.code_bits+1)))
self.comb += self.dberr.eq(~parity)
for b in range(calc_code_bits(self.input_size)):
bits = [2**b-1]
bits += build_seq(b, self.input_size+calc_code_bits(self.input_size))
self.comb += self.code_out[b].eq(xor_tree(self.par_vec, bits))