2023-06-20 13:24:22 -04:00
|
|
|
# Copyright (C) Peter McGoron
|
|
|
|
#
|
|
|
|
# This file is a part of Upsilon, a free and open source software project.
|
|
|
|
# For license terms, refer to the files in `doc/copying` in the Upsilon
|
|
|
|
# source distribution.
|
|
|
|
|
2022-10-17 00:44:30 -04:00
|
|
|
# Functions for converting to and from fixed point in Python.
|
|
|
|
from math import log10, floor
|
2022-10-27 17:55:12 -04:00
|
|
|
from decimal import *
|
2022-10-17 00:44:30 -04:00
|
|
|
|
|
|
|
def string_to_fixed_point(s, fracnum):
|
|
|
|
l = s.split('.')
|
|
|
|
if len(l) == 1:
|
|
|
|
return int(s) << fracnum
|
|
|
|
elif len(l) != 2:
|
|
|
|
return None
|
|
|
|
|
|
|
|
dec = 10
|
|
|
|
frac = 0
|
|
|
|
|
2022-10-27 17:55:12 -04:00
|
|
|
frac_decimal = Decimal(f'0.{l[1]}')
|
2022-10-17 00:44:30 -04:00
|
|
|
# get the smallest power of ten higher then frac_decimal
|
|
|
|
frac = 0
|
|
|
|
|
|
|
|
# Example:
|
|
|
|
# 0.4567 = 0.abcdefgh...
|
|
|
|
# where abcdefgh are binary digits.
|
|
|
|
# multiply both sides by two:
|
|
|
|
# 0.9134 = a.bcdefgh ...
|
|
|
|
# therefore a = 0. Then remove the most significant digit.
|
|
|
|
# Then multiply by 2 again. Then
|
2022-10-27 17:55:12 -04:00
|
|
|
# 1.8268 = b.cdefgh ...
|
2022-10-17 00:44:30 -04:00
|
|
|
# therefore b = 1. Then take 8268, and so on.
|
|
|
|
for i in range(0,fracnum):
|
2022-10-27 17:55:12 -04:00
|
|
|
frac_decimal = frac_decimal * 2
|
|
|
|
div = floor(frac_decimal)
|
|
|
|
|
2022-10-17 00:44:30 -04:00
|
|
|
frac = div | (frac << 1)
|
2022-10-27 17:55:12 -04:00
|
|
|
frac_decimal = frac_decimal - div
|
2022-10-17 00:44:30 -04:00
|
|
|
|
|
|
|
whole = int(l[0])
|
|
|
|
if whole < 0:
|
|
|
|
return -((-whole) << fracnum | frac)
|
|
|
|
else:
|
|
|
|
return whole << fracnum | frac
|
|
|
|
|
|
|
|
def fixed_point_to_string(fxp, fracnum):
|
|
|
|
whole = str(fxp >> fracnum)
|
|
|
|
mask = (1 << fracnum) - 1
|
|
|
|
fracbit = fxp & mask
|
|
|
|
n = 1
|
|
|
|
frac = ""
|
|
|
|
|
|
|
|
if fracbit == 0:
|
|
|
|
return whole
|
|
|
|
|
|
|
|
# The same method can be applied backwards.
|
|
|
|
# 0.1110101 = 0.abcdefgh ...
|
|
|
|
# where abcdefgh... are decimal digits. Then multiply by 10 to
|
|
|
|
# get
|
|
|
|
# 1001.0010010 = a.bcdefgh ...
|
|
|
|
# therefore a = 0b1001 = 9. Then use a bitmask to get
|
|
|
|
# 0.0010010 = 0.bcdefgh ...
|
|
|
|
# etc.
|
|
|
|
|
|
|
|
for i in range(0, fracnum):
|
|
|
|
fracbit = fracbit * 10
|
|
|
|
frac = frac + str(fracbit >> fracnum)
|
|
|
|
fracbit = fracbit & mask
|
|
|
|
return whole + "." + frac
|