upsilon/firmware/rtl/control_loop/control_loop.v

425 lines
12 KiB
Coq
Raw Normal View History

2022-10-22 01:54:47 -04:00
/*************** Precision **************
2022-09-16 18:01:34 -04:00
* The control loop is designed around these values, but generally
* does not hardcode them.
*
* Since α and P are precalculated outside of the loop, their
* conversion to numbers the loop understands is done outside of
* the loop and in the kernel.
*
* The 18-bit ADC is twos-compliment, -10.24V to 10.24V,
* with 78μV per increment.
* The 20-bit DAC is twos-compliment, -10V to 10V.
*
* The `P` constant has a minimum value of 1e-7 with a precision
* of 1e-9, and a maxmimum value of 1.
*
* The `I` constant has a minimum value of 1e-4 with a precision
* of 1e-6 and a maximum value of 100.
*
* Δt is cycles/100MHz. This makes Δt at least 10 ns, with a
* maximum of 1 ms.
*
* Intermediate values are 48-bit fixed-point integers multiplied
* by the step size of the ADC. The first 18 bits are the whole
* number and sign bits. This means intermediate values correspond
* exactly to values as understood by the ADC, with extra precision.
*
* To get the normal fixed-point value of an intermediate value,
* multiply it by 78e-6. To convert a normal fixed-point integer
* to an intermediate value, multiply it by 1/78e-6. In both
* cases, the conversion constant is a normal fixed-point integer.
*
* For instance, to encode the value 78e-6 as an intermediate
* value, multiply it by 1/78e-6 to obtain 1. Thus the value
* should be stored as 1 (whole bit) followed by zeros (fractional
* bits).
*/
`define ERR_WID (ADC_WID + 1)
module control_loop
#(
parameter ADC_WID = 18,
/* Code assumes DAC_WID > ADC_WID. If/when this is not the
* case, truncation code must be changed.
*/
parameter DAC_WID = 24,
/* Analog Devices DACs have a register code in the upper 4 bits.
* The data follows it.
*/
parameter DAC_DATA_WID = 20,
parameter CONSTS_WID = 48, // larger than ADC_WID
parameter CONSTS_FRAC_WID = CONSTS_WID-15,
parameter DELAY_WID = 16,
/* [ERR_WID_SIZ-1:0] must be able to store
* ERR_WID (ADC_WID + 1).
*/
parameter ERR_WID_SIZ = 6,
parameter DATA_WID = CONSTS_WID,
parameter READ_DAC_DELAY = 5
2022-09-16 18:01:34 -04:00
) (
input clk,
input signed [ADC_WID-1:0] measured_value,
output adc_conv,
output adc_arm,
input adc_finished,
2022-09-16 18:01:34 -04:00
output reg signed [DAC_WID-1:0] to_dac,
input signed [DAC_WID-1:0] from_dac,
output dac_ss,
output dac_arm,
input dac_finished,
/* Hacky ad-hoc read-write interface. */
input reg [CONTROL_LOOP_CMD_WIDTH-1:0] cmd,
input reg [DATA_WIDTH-1:0] word_in,
output reg [DATA_WIDTH-1:0] word_out,
input start_cmd,
output reg finish_cmd
2022-09-16 18:01:34 -04:00
);
/* The loop variables can be modified on the fly. Each
* modification takes effect on the next loop cycle.
* When a caller modifies a variable, the modified
* variable is saved in [name]_buffer and loaded at CYCLE_START.
*/
2022-09-16 18:01:34 -04:00
reg signed [ADC_WID-1:0] setpt = 0;
reg signed [ADC_WID-1:0] setpt_buffer = 0;
2022-09-16 18:01:34 -04:00
reg signed [CONSTS_WID-1:0] cl_alpha_reg = 0;
reg signed [CONSTS_WID-1:0] cl_alpha_reg_buffer = 0;
2022-09-16 18:01:34 -04:00
reg signed [CONSTS_WID-1:0] cl_p_reg = 0;
reg signed [CONSTS_WID-1:0] cl_p_reg_buffer = 0;
reg [DELAY_WID-1:0] dely = 0;
reg [DELAY_WID-1:0] dely_buffer = 0;
reg running = 0;
reg signed[DAC_DATA_WID-1:0] stored_dac_val = 0;
2022-09-16 18:01:34 -04:00
/* Registers for PI calculations */
reg signed [ERR_WID-1:0] err_prev = 0;
/****** State machine
*
*
* INITIATE_READ_FROM_DAC
*
* WAIT_FOR_DAC_READ
*
* WAIT_FOR_DAC_RESPONSE (on reset)
* (when value is read)
* CYCLE_START
* (wait time delay)
* WAIT_ON_ADC
*
* WAIT_ON_MUL
*
* WAIT_ON_DAC
*
*
****** Outline
* There are two systems: the read-write interface and the loop.
* The read-write interface allows another module (i.e. the CPU)
* to access and change constants. When a constant is changed the
* loop must reset the values that are preserved between loops
* (previous adjustment and previous delay).
*
* When the loop starts it must find the current value from the
* DAC and write to it. The value from the DAC is then adjusted
* with the output of the control loop. Afterwards it does not
* need to query the DAC for the updated value since it was the one
* that updated the value in the first place.
2022-09-16 18:01:34 -04:00
*/
localparam CYCLE_START = 0;
2022-09-16 18:01:34 -04:00
localparam WAIT_ON_ADC = 1;
localparam WAIT_ON_MUL = 2;
localparam WAIT_ON_DAC = 3;
localparam INIT_READ_FROM_DAC = 4;
localparam WAIT_FOR_DAC_READ = 5;
localparam WAIT_FOR_DAC_RESPONSE = 6;
localparam STATESIZ = 3;
2022-09-16 18:01:34 -04:00
reg [STATESIZ-1:0] state = INIT_READ_FROM_DAC;
2022-09-16 18:01:34 -04:00
/**** Precision Propogation
2022-09-16 18:01:34 -04:00
*
* Measured value: ADC_WID.0
* Setpoint: ADC_WID.0
* - ----------------------------|
* e: ERR_WID.0
*
* α: CONSTS_WHOLE.CONSTS_FRAC | P: CONSTS_WHOLE.CONSTS_FRAC
* e: ERR_WID.0 | e_p: ERR_WID.0
* x ----------------------------| x-----------------------------
* αe: CONSTS_WHOLE+ERR_WID.CONSTS_FRAC - Pe_p: CONSTS_WHOLE+ERR_WID.CONSTS_FRAC
* + A_p: CONSTS_WHOLE+ERR_WID.CONSTS_FRAC
* + stored_dac_val << CONSTS_FRAC: DAC_DATA_WID.CONSTS_FRAC
2022-09-16 18:01:34 -04:00
* --------------------------------------------------------------
* A_p + αe - Pe_p + stored_dac_val: CONSTS_WHOLE+ERR_WID+1.CONSTS_FRAC
2022-09-16 18:01:34 -04:00
* --> discard fractional bits: CONSTS_WHOLE+ADC_WID+1.(DAC_DATA_WID - ADC_WID)
* --> Saturate-truncate: ADC_WID.(DAC_DATA_WID-ADC_WID)
* --> reinterpret and write into DAC: DAC_DATA_WID.0
*/
/**** Calculate Error ****/
wire [ERR_WID-1:0] err_cur = measured_value - setpoint;
2022-09-16 18:01:34 -04:00
/****** Multiplication *******
* Truncation of a fixed-point integer to a smaller buffer requires
* 1) truncating higher order bits
* 2) removing lower order bits
*
* The ADC number has no fractional digits, so the fixed point output
* is [CONSTS_WHOLE + ERR_WID].CONSTS_FRAC_WID
* with total width CONSTS_WID + ERR_WID
*
* Both multipliers are armed at the same time.
* Their output wires are ANDed together so the state machine
* progresses when both are finished.
*/
localparam MUL_WHOLE_WID = CONSTS_WHOLE + ERR_WID;
localparam MUL_FRAC_WID = CONSTS_FRAC;
localparam MUL_WID = MUL_WHOLE_WID + MUL_FRAC_WID;
reg arm_mul = 0;
wire alpha_err_fin;
wire signed [MUL_WID-1:0] alpha_err;
wire p_err_prev_fin;
wire signed [MUL_WID-1:0] p_err_prev;
wire mul_finished = alpha_err_fin & p_err_fin;
2022-09-16 18:01:34 -04:00
/* αe */
boothmul #(
.A1_LEN(CONSTS_WID),
.A2_LEN(ERR_WID),
.A2LEN_SIZ(ERR_WID_SIZ)
) boothmul_alpha_err_mul (
.clk(clk),
.arm(arm_mul),
.a1(cl_alpha_reg),
.a2(err),
.outn(alpha_err),
.fin(alpha_err_fin)
);
/* Pe_p */
boothmul #(
.A1_LEN(CONSTS_WID),
.A2_LEN(ERR_WID),
.A2LEN_SIZ(ERR_WID_SIZ)
) booth_mul_P_err_mul (
.clk(clk),
.arm(arm_mul),
.a1(cl_p_reg),
.a2(err_prev),
.outn(p_err_prev),
.fin(p_err_prev_fin)
);
/**** Subtraction after multiplication ****/
localparam SUB_WHOLE_WID = MUL_WHOLE_WID + 1;
localparam SUB_FRAC_WID = MUL_FRAC_WID;
localparam SUB_WID = SUB_WHOLE_WID + SUB_FRAC_WID;
reg signed [SUB_WID-1:0] adj_old = 0;
wire signed [SUB_WID-1:0] newadj = adj_old + alpha_err - p_err_prev
+ (stored_dac_val << CONSTS_FRAC);
2022-09-16 18:01:34 -04:00
/**** Discard fractional bits ****
* The truncation of the subtraction result first takes off the lower
* order bits:
* [ SUB_WHOLE_WID ].[ SUB_FRAC_WID ]
* [ SUB_WHOLE_WID ].[RTRUNC_FRAC_WID]############
* (SUB_FRAC_WID - RTRUNC_FRAC_WID)^
*/
localparam RTRUNC_FRAC_WID = DAC_DATA_WID - ADC_WID;
localparam RTRUNC_WHOLE_WID = SUB_WHOLE_WID;
localparam RTRUNC_WID = RTRUNC_WHOLE_WID + RTRUNC_FRAC_WID;
wire signed[RTRUNC_WID-1:0] rtrunc =
2022-09-16 18:01:34 -04:00
newadj[SUB_WID-1:SUB_FRAC_WID-RTRUNC_FRAC_WID];
/**** Truncate-Saturate ****
* Truncate the result into a value acceptable to the DAC.
* [ SUB_WHOLE_WID ].[RTRUNC_FRAC_WID]############
* [ADC_WID].[DAC_DATA_WID - ADC_WID]
* reinterpreted as
* [DAC_DATA_WID].0
*/
wire signed[DAC_DATA_WID-1:0] dac_adj_val;
2022-09-16 18:01:34 -04:00
intsat #(
.IN_LEN(RTRUNC_WID),
.LTRUNC(DAC_DATA_WID)
) sat_newadj_rtrunc (
.inp(rtrunc),
2022-09-16 18:01:34 -04:00
.outp(dac_adj_val)
);
reg [DELAY_WID-1:0] timer = 0;
/**** Read-Write control interface. ****/
2022-09-16 18:01:34 -04:00
always @ (posedge clk) begin
if (start_cmd && !finish_cmd) begin
case (cmd)
CONTROL_LOOP_NOOP: CONTROL_LOOP_NOOP | CONTROL_LOOP_WRITE_BIT:
finish_cmd <= 1;
CONTROL_LOOP_STATUS: begin
word_out[DATA_WID-1:1] <= 0;
word_out[0] <= running;
finish_cmd <= 1;
end
CONTROL_LOOP_STATUS | CONTROL_LOOP_WRITE_BIT:
running <= word_in[0];
finish_cmd <= 1;
CONTROL_LOOP_SETPT: begin
word_out[DATA_WID-1:ADC_WID] <= 0;
word_out[ADC_WID-1:0] <= setpt;
finish_cmd <= 1;
end
CONTROL_LOOP_SETPT | CONTROL_LOOP_WRITE_BIT:
setpt_buffer <= word_in[ADC_WID-1:0];
finish_cmd <= 1;
CONTROL_LOOP_P: begin
word_out <= cl_p_reg;
finish_cmd <= 1;
end
CONTROL_LOOP_P | CONTROL_LOOP_WRITE_BIT: begin
cl_p_reg_buffer <= word_in;
finish_cmd <= 1;
end
CONTROL_LOOP_ALPHA: begin
word_out <= cl_alpha_reg;
finish_cmd <= 1;
end
CONTROL_LOOP_ALPHA | CONTROL_LOOP_WRITE_BIT: begin
cl_alpha_reg_buffer <= word_in;
finish_cmd <= 1;
end
CONTROL_LOOP_DELAY: begin
word_out[DATA_WID-1:DELAY_WID] <= 0;
word_out[DELAY_WID-1:0] <= dely;
finish_cmd <= 1;
end
CONTROL_LOOP_DELAY | CONTROL_LOOP_WRITE_BIT: begin
dely_buffer <= word_in[DELAY_WID-1:0];
finish_cmd <= 1;
end
CONTROL_LOOP_ERR: begin
word_out[DATA_WID-1:ERR_WID] <= 0;
word_out[ERR_WID-1:0] <= err_prev;
finish_cmd <= 1;
end
CONTROL_LOOP_Z: begin
word_out[DATA_WID-1:DAC_DATA_WID] <= 0;
word_out[DAC_DATA_WID-1:0] <= stored_dac_val;
finish_cmd <= 1;
end
end else if (!start_cmd) begin
finish_cmd <= 0;
end
end
/* This is not a race condition as long as two variables are
* not being assigned at the same time. Instead, the lower
* assign block will use the older values (i.e. the upper assign
* block only takes effect next clock cycle).
*/
always @ (posedge clk) begin
case (state)
INIT_READ_FROM_DAC: begin
if (running) begin
/* 1001[0....] is read from dac register */
to_dac <= b'1001 << DAC_DATA_WID;
dac_ss <= 1;
dac_arm <= 1;
state <= WAIT_FOR_DAC_READ;
end
end
WAIT_FOR_DAC_READ: begin
if (dac_finished) begin
state <= WAIT_FOR_DAC_RESPONSE;
dac_ss <= 0;
dac_arm <= 0;
timer <= 1;
end
end
WAIT_FOR_DAC_RESPONSE: begin
if (timer < READ_DAC_DELAY && timer != 0) begin
timer <= timer + 1;
end else if (timer == READ_DAC_DELAY) begin
dac_ss <= 1;
dac_arm <= 1;
to_dac <= 0;
timer <= 0;
end else if (dac_finished) begin
state <= CYCLE_START;
dac_ss <= 0;
dac_arm <= 0;
stored_dac_val <= from_dac;
end
end
CYCLE_START: begin
if (!running) begin
state <= INIT_READ_FROM_DAC;
end else if (timer < dely) begin
timer <= timer + 1;
2022-09-16 18:01:34 -04:00
end else begin
/* On change of constants, previous values are invalidated. */
if (setpt != setpt_buffer ||
cl_alpha_reg != cl_alpha_reg_buffer ||
cl_p_reg != cl_p_reg_buffer) begin
setpt <= setpt_buffer;
dely <= dely_buf;
cl_alpha_reg <= cl_alpha_reg_buffer;
cl_p_reg <= cl_p_reg_buffer;
adj_prev <= 0;
err_prev <= 0;
end
2022-09-16 18:01:34 -04:00
state <= WAIT_ON_ADC;
timer <= 0;
adc_arm <= 1;
2022-10-17 00:44:30 -04:00
adc_conv <= 1;
2022-09-16 18:01:34 -04:00
end
end
WAIT_ON_ADC: if (adc_finished) begin
adc_arm <= 0;
2022-10-17 00:44:30 -04:00
adc_conv <= 0;
2022-09-16 18:01:34 -04:00
arm_mul <= 1;
state <= WAIT_ON_MUL;
end
WAIT_ON_MUL: if (mul_finished) begin
arm_mul <= 0;
dac_arm <= 1;
2022-10-17 00:44:30 -04:00
dac_ss <= 1;
stored_dac_val <= dac_adj_val;
to_dac <= b'0001 << DAC_DATA_WID | dac_adj_val;
2022-09-16 18:01:34 -04:00
state <= WAIT_ON_DAC;
end
WAIT_ON_DAC: if (dac_finished) begin
state <= CYCLE_START;
2022-10-17 00:44:30 -04:00
dac_ss <= 0;
2022-09-16 18:01:34 -04:00
dac_arm <= 0;
err_prev <= err_cur;
adj_old <= newadj;
2022-09-16 18:01:34 -04:00
end
end
2022-09-16 18:01:34 -04:00
end
endmodule