upsilon/gateware/extio.py

360 lines
12 KiB
Python

# Copyright 2023-2024 (C) Peter McGoron
#
# This file is a part of Upsilon, a free and open source software project.
# For license terms, refer to the files in `doc/copying` in the Upsilon
# source distribution.
from migen import *
from litex.soc.interconnect.wishbone import Interface
from util import *
from region import *
class Waveform(LiteXModule):
""" A Wishbone bus master that sends a waveform to a SPI master
by reading from RAM. """
public_registers = {
"run" : Register(
origin=0,
bitwidth=1,
rw=True,
),
"cntr": Register(
origin=0x4,
bitwidth=16,
rw=False,
),
"do_loop": Register(
origin=0x8,
bitwidth= 1,
rw= True,
),
"finished_or_ready": Register(
origin=0xC,
bitwidth= 2,
rw= False,
),
"wform_width": Register(
origin=0x10,
bitwidth=16,
rw= True,
),
"timer": Register(
origin=0x14,
bitwidth= 16,
rw= False,
),
"timer_spacing": Register(
origin= 0x18,
bitwidth= 16,
rw= True,
),
"force_stop" : Register (
origin=0x1C,
bitwidth=1,
rw=True,
),
}
width = 0x20
def mmio(self, origin):
r = ""
for name, reg in self.public_registers.items():
r += f'{name} = Register(loc={origin + reg.origin}, bitwidth={reg.bitwidth}, rw={reg.rw}),'
return r
def __init__(self,
ram_start_addr = 0,
spi_start_addr = 0x10000000,
counter_max_wid = 16,
timer_wid = 16,
):
# This is Waveform's bus to control SPI and RAM devices it owns.
self.masterbus = Interface(address_width=32, data_width=32, addressing="byte")
# This is the Waveform's interface that is controlled by the Main CPU.
self.slavebus = b = Interface(address_width=32, data_width=32, addressing="byte")
self.mmap = MemoryMap(self.masterbus)
self.mmap.add_region("ram",
BasicRegion(ram_start_addr, None))
self.mmap.add_region("spi",
BasicRegion(spi_start_addr, None))
run = Signal()
cntr = Signal(counter_max_wid)
do_loop = Signal()
ready = Signal()
finished = Signal()
wform_size = Signal(counter_max_wid)
timer = Signal(timer_wid)
timer_spacing = Signal(timer_wid)
force_stop = Signal()
self.sync += If(b.cyc & b.stb & ~b.ack,
Case(b.adr[0:5], {
0x0: If(b.we,
run.eq(b.dat_w[0]),
).Else(
b.dat_r.eq(run)
),
0x4: [
b.dat_r.eq(cntr),
],
0x8: [
If(b.we,
do_loop.eq(b.dat_w[0]),
).Else(
b.dat_r.eq(do_loop),
)
],
0xC: [
b.dat_r.eq(finished << 1 | ready),
],
0x10: If(b.we,
wform_size.eq(b.dat_w[0:counter_max_wid]),
).Else(
b.dat_r.eq(wform_size)
),
0x14: b.dat_r.eq(timer),
0x18: If(b.we,
timer_spacing.eq(b.dat_w[0:timer_wid]),
).Else(
b.dat_r.eq(timer_spacing),
),
0x1C: If(b.we,
force_stop.eq(b.dat_w[0]),
).Else(
b.dat_r.eq(force_stop),
),
# (W)A(V)EFO(RM)
"default": b.dat_r.eq(0xAEF0AEF0),
}
),
b.ack.eq(1),
).Elif(~b.cyc,
b.ack.eq(0),
)
self.specials += Instance("waveform",
p_RAM_START_ADDR = ram_start_addr,
p_SPI_START_ADDR = spi_start_addr,
p_COUNTER_MAX_WID = counter_max_wid,
p_TIMER_WID = timer_wid,
i_clk = ClockSignal(),
i_run = run,
i_force_stop = force_stop,
o_cntr = cntr,
i_do_loop = do_loop,
o_finished = finished,
o_ready = ready,
i_wform_size = wform_size,
o_timer = timer,
i_timer_spacing = timer_spacing,
o_wb_adr = self.masterbus.adr,
o_wb_cyc = self.masterbus.cyc,
o_wb_we = self.masterbus.we,
o_wb_stb = self.masterbus.stb,
o_wb_sel = self.masterbus.sel,
o_wb_dat_w = self.masterbus.dat_w,
i_wb_dat_r = self.masterbus.dat_r,
i_wb_ack = self.masterbus.ack,
)
def add_ram(self, bus, size):
self.mmap.regions['ram'].bus = bus
self.mmap.regions['ram'].size = size
def add_spi(self, bus):
# Waveform code has the SPI hardcoded in, because it is a Verilog
# module.
self.mmap.regions['spi'].bus = bus
self.mmap.regions['spi'].size = SPIMaster.width
def do_finalize(self):
self.mmap.finalize()
class SPIMaster(Module):
# IF THESE ARE CHANGED, CHANGE waveform.v !!
AD5791_PARAMS = {
"polarity" :0,
"phase" :1,
"spi_cycle_half_wait" : 10,
"ss_wait" : 5,
"enable_miso" : 1,
"enable_mosi" : 1,
"spi_wid" : 24,
}
LT_ADC_PARAMS = {
"polarity" : 1,
"phase" : 0,
"spi_cycle_half_wait" : 5,
"ss_wait" : 60,
"enable_mosi" : 0,
}
width = 0x20
public_registers = {
# The first bit is the "ready" bit, when the master is
# not armed and ready to be armed.
# The second bit is the "finished" bit, when the master is
# armed and finished with a transmission.
"finished_or_ready": Register(
origin= 0,
bitwidth= 2,
rw=False,
),
# One bit to initiate a transmission cycle. Transmission
# cycles CANNOT be interrupted.
"arm" : Register(
origin=4,
bitwidth=1,
rw=True,
),
# Data sent from the SPI slave.
"from_slave": Register(
origin=8,
bitwidth=32,
rw=False,
),
# Data sent to the SPI slave.
"to_slave": Register(
origin=0xC,
bitwidth=32,
rw=True
),
# Same as ready_or_finished, but halts until ready or finished
# goes high. Dangerous, might cause cores to hang!
"wait_finished_or_ready": Register(
origin=0x10,
bitwidth=2,
rw= False,
),
}
def mmio(self, origin):
r = ""
for name, reg in self.public_registers.items():
r += f'{name} = Register(loc={origin + reg.origin},bitwidth={reg.bitwidth},rw={reg.rw}),'
return r
""" Wrapper for the SPI master verilog code. """
def __init__(self, rst, miso, mosi, sck, ss_L,
polarity = 0,
phase = 0,
ss_wait = 1,
enable_miso = 1,
enable_mosi = 1,
spi_wid = 24,
spi_cycle_half_wait = 1,
):
"""
:param rst: Reset signal.
:param miso: MISO signal.
:param mosi: MOSI signal.
:param sck: SCK signal.
:param ss: SS signal.
:param phase: Phase of SPI master. This phase is not the standard
SPI phase because it is defined in terms of the rising edge, not
the leading edge. See https://software.mcgoron.com/peter/spi
:param polarity: See https://software.mcgoron.com/peter/spi.
:param enable_miso: If ``False``, the module does not read data
from MISO into a register.
:param enable_mosi: If ``False``, the module does not write data
to MOSI from a register.
:param spi_wid: Verilog parameter: see file.
:param spi_cycle_half_wait: Verilog parameter: see file.
"""
self.bus = Interface(data_width = 32, address_width=32, addressing="byte")
from_slave = Signal(spi_wid)
to_slave = Signal(spi_wid)
finished_or_ready = Signal(2)
arm = Signal()
self.comb += [
self.bus.err.eq(0),
]
self.sync += [
If(self.bus.cyc & self.bus.stb & ~self.bus.ack,
Case(self.bus.adr[0:5], {
0x0: [
self.bus.dat_r[2:].eq(0),
self.bus.dat_r[0:2].eq(finished_or_ready),
self.bus.ack.eq(1),
],
0x4: [
If(self.bus.we,
arm.eq(self.bus.dat_w[0]),
).Else(
self.bus.dat_r[1:].eq(0),
self.bus.dat_r[0].eq(arm),
),
self.bus.ack.eq(1),
],
0x8: [
self.bus.dat_r[spi_wid:].eq(0),
self.bus.dat_r[0:spi_wid].eq(from_slave),
self.bus.ack.eq(1),
],
0xC: [
If(self.bus.we,
to_slave.eq(self.bus.dat_r[0:spi_wid]),
).Else(
self.bus.dat_r[spi_wid:].eq(0),
self.bus.dat_r[0:spi_wid].eq(to_slave),
),
self.bus.ack.eq(1),
],
0x10: If(finished_or_ready[0] | finished_or_ready[1],
self.bus.dat_r[1:].eq(0),
self.bus.dat_r.eq(finished_or_ready),
),
"default":
# 0xSPI00SPI
self.bus.dat_r.eq(0x57100571),
}),
).Elif(~self.bus.cyc,
self.bus.ack.eq(0)
)
]
self.specials += Instance("spi_master_ss",
p_SS_WAIT = ss_wait,
p_SS_WAIT_TIMER_LEN = minbits(ss_wait),
p_CYCLE_HALF_WAIT = spi_cycle_half_wait,
p_TIMER_LEN = minbits(spi_cycle_half_wait),
p_WID = spi_wid,
p_WID_LEN = minbits(spi_wid),
p_ENABLE_MISO = enable_miso,
p_ENABLE_MOSI = enable_mosi,
p_POLARITY = polarity,
p_PHASE = phase,
i_clk = ClockSignal(),
# module_reset is active high
i_rst_L = ~rst,
i_miso = miso,
o_mosi = mosi,
o_sck_wire = sck,
o_ss_L = ss_L,
o_from_slave = from_slave,
i_to_slave = to_slave,
o_finished = finished_or_ready[1],
o_ready_to_arm = finished_or_ready[0],
i_arm = arm,
)