206 lines
4.7 KiB
Verilog
206 lines
4.7 KiB
Verilog
/* Copyright 2023 (C) Peter McGoron
|
|
* This file is a part of Upsilon, a free and open source software project.
|
|
* For license terms, refer to the files in `doc/copying` in the Upsilon
|
|
* source distribution.
|
|
*/
|
|
`timescale 10ns/10ns
|
|
`include "raster_cmds.vh"
|
|
`include "ram_shim_cmds.vh"
|
|
module raster_sim #(
|
|
parameter DAC_WAIT_BETWEEN_CMD = 10,
|
|
|
|
parameter DAT_WID = 24,
|
|
parameter RAM_WORD = 16,
|
|
parameter RAM_WID = 32,
|
|
|
|
parameter RAM_SIM_WAIT_TIME = 72,
|
|
parameter ADC_SIM_WAIT_TIME = 54
|
|
) (
|
|
input clk,
|
|
output is_running,
|
|
|
|
input [`RASTER_CMD_WID-1:0] kernel_cmd,
|
|
input [`RASTER_DATA_WID-1:0] kernel_data_in,
|
|
output [`RASTER_DATA_WID-1:0] kernel_data_out,
|
|
input kernel_ready,
|
|
output kernel_finished,
|
|
|
|
output [`DAC_DATA_WID-1:0] x_dac,
|
|
output [`DAC_DATA_WID-1:0] y_dac,
|
|
|
|
output reg [`ADCNUM-1:0] adc_arm,
|
|
input [`MAX_ADC_DATA_WID-1:0] adc_data [`ADCNUM-1:0],
|
|
input [`ADCNUM-1:0] adc_finished,
|
|
|
|
/* DMA interface */
|
|
output [RAM_WORD-1:0] word,
|
|
output [RAM_WID-1:0] addr,
|
|
output reg ram_write,
|
|
input ram_valid,
|
|
|
|
/* RAM shim control interface */
|
|
input [RAM_WID-1:0] shim_cmd_data,
|
|
input [`RAM_SHIM_CMD_WID-1:0] shim_cmd,
|
|
input shim_cmd_active,
|
|
output shim_cmd_finished,
|
|
output [RAM_WID-1:0] shim_cmd_data_out
|
|
);
|
|
|
|
/**** DAC simulation.
|
|
* The code to handle each axis (X and Y) are similar.
|
|
****/
|
|
|
|
reg [`DAC_WID-1:0] coord_write_buf [1:0];
|
|
/* verilator lint_off UNUSEDSIGNAL */
|
|
reg [`DAC_WID-1:0] coord_to_dac [1:0];
|
|
/* verilator lint_on UNUSEDSIGNAL */
|
|
reg [`DAC_WID-1:0] coord_from_dac [1:0];
|
|
wire coord_arm [1:0];
|
|
reg coord_finished [1:0];
|
|
|
|
reg [`DAC_DATA_WID-1:0] coord_dac [1:0];
|
|
assign x_dac = coord_dac[0];
|
|
assign y_dac = coord_dac[1];
|
|
|
|
genvar ci;
|
|
generate for (ci = 0; ci < 2; ci = ci + 1) begin
|
|
initial begin
|
|
coord_write_buf[ci] = 0;
|
|
coord_to_dac[ci] = 0;
|
|
coord_from_dac[ci] = 0;
|
|
coord_finished[ci] = 0;
|
|
end
|
|
|
|
always @ (posedge clk) begin
|
|
if (coord_arm[ci] && !coord_finished[ci]) begin
|
|
coord_to_dac[ci] <= coord_write_buf[ci];
|
|
coord_finished[ci] <= 1;
|
|
|
|
case (coord_from_dac[ci][`DAC_WID-1:`DAC_DATA_WID])
|
|
4'b1001: begin
|
|
coord_write_buf[ci] <= {4'b1001, coord_dac[ci]};
|
|
end
|
|
4'b0001: begin
|
|
coord_write_buf[ci] <= 0;
|
|
coord_dac[ci] <= coord_from_dac[ci][`DAC_DATA_WID-1:0];
|
|
end
|
|
default: ;
|
|
endcase
|
|
|
|
end else if (!coord_arm[ci]) begin
|
|
coord_finished[ci] <= 0;
|
|
end
|
|
end
|
|
end endgenerate
|
|
|
|
/**** ADC Shim
|
|
* This shim and the shim below implement delays to simulate the actual
|
|
* acquisition process. The values are then floated up to the Verilator
|
|
* simulator so the C++ code doesn't have to implement timers manually.
|
|
****/
|
|
|
|
wire [`ADCNUM-1:0] adc_arm_internal;
|
|
reg [31:0] adc_wait_cntr = 0;
|
|
|
|
always @ (posedge clk) begin
|
|
if (adc_arm_internal != 0) begin
|
|
if (adc_wait_cntr < ADC_SIM_WAIT_TIME) begin
|
|
adc_wait_cntr <= adc_wait_cntr + 1;
|
|
end else begin
|
|
adc_arm <= adc_arm_internal;
|
|
end
|
|
end else begin
|
|
adc_wait_cntr <= 0;
|
|
adc_arm <= 0;
|
|
end
|
|
end
|
|
|
|
/**** RAM Shim ****/
|
|
|
|
wire ram_write_internal;
|
|
reg [31:0] ram_wait_cntr = 0;
|
|
|
|
always @ (posedge clk) begin
|
|
if (!ram_write_internal) begin
|
|
ram_wait_cntr <= 0;
|
|
ram_write <= 0;
|
|
end else if (ram_wait_cntr < RAM_SIM_WAIT_TIME) begin
|
|
ram_wait_cntr <= ram_wait_cntr + 1;
|
|
end else begin
|
|
ram_write <= 1;
|
|
end
|
|
end
|
|
|
|
wire [`MAX_ADC_DATA_WID-1:0] ram_data;
|
|
wire ram_commit;
|
|
wire ram_finished;
|
|
|
|
ram_shim #(
|
|
.DAT_WID(DAT_WID),
|
|
.RAM_WORD(RAM_WORD),
|
|
.RAM_WID(RAM_WID)
|
|
) ram (
|
|
.clk(clk),
|
|
.rst(0),
|
|
.data(ram_data),
|
|
.data_commit(ram_commit),
|
|
.finished(ram_finished),
|
|
.word(word),
|
|
.addr(addr),
|
|
.write(ram_write_internal),
|
|
.valid(ram_valid),
|
|
|
|
.cmd_data(shim_cmd_data),
|
|
.cmd(shim_cmd),
|
|
.cmd_active(shim_cmd_active),
|
|
.cmd_finished(shim_cmd_finished),
|
|
.cmd_data_out(shim_cmd_data_out)
|
|
);
|
|
|
|
/* Converting array to vector, arrays are easier to handle in Verilator. */
|
|
wire [`ADCNUM*`MAX_ADC_DATA_WID-1:0] adc_data_internal;
|
|
genvar ii;
|
|
generate for (ii = 0; ii < `ADCNUM; ii = ii + 1) begin
|
|
assign adc_data_internal[(ii+1)*`MAX_ADC_DATA_WID-1:ii*`MAX_ADC_DATA_WID]
|
|
= adc_data[ii];
|
|
end endgenerate
|
|
|
|
raster #(
|
|
.DAC_WAIT_BETWEEN_CMD(DAC_WAIT_BETWEEN_CMD)
|
|
) raster (
|
|
.clk(clk),
|
|
.is_running(is_running),
|
|
|
|
.kernel_cmd(kernel_cmd),
|
|
.kernel_data_in(kernel_data_in),
|
|
.kernel_data_out(kernel_data_out),
|
|
.kernel_ready(kernel_ready),
|
|
.kernel_finished(kernel_finished),
|
|
|
|
.x_arm(coord_arm[0]),
|
|
.x_to_dac(coord_to_dac[0]),
|
|
.x_from_dac(coord_from_dac[0]),
|
|
.x_finished(coord_finished[0]),
|
|
|
|
.y_arm(coord_arm[1]),
|
|
.y_to_dac(coord_to_dac[1]),
|
|
.y_from_dac(coord_from_dac[1]),
|
|
.y_finished(coord_finished[1]),
|
|
|
|
.adc_arm(adc_arm_internal),
|
|
.adc_data(adc_data_internal),
|
|
.adc_finished(adc_finished),
|
|
|
|
.data(ram_data),
|
|
.mem_commit(ram_commit),
|
|
.mem_finished(ram_finished)
|
|
);
|
|
|
|
initial begin
|
|
$dumpfile("raster.fst");
|
|
$dumpvars;
|
|
end
|
|
|
|
endmodule
|
|
`undefineall
|