aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorGravatar Peter McGoron 2024-07-29 14:01:20 -0400
committerGravatar Peter McGoron 2024-07-29 14:01:20 -0400
commit5a5fbd861fbd199a1611874d1810a41796bff83e (patch)
treefd0b8cec56289032b374aa0e94bb819427325031
define-namespace and SRFI-1
-rw-r--r--README.rst51
-rw-r--r--define-namespace-5.scm91
-rw-r--r--define-namespace-7.scm21
-rw-r--r--srfi/srfi-1.scm1391
4 files changed, 1554 insertions, 0 deletions
diff --git a/README.rst b/README.rst
new file mode 100644
index 0000000..77ce6bc
--- /dev/null
+++ b/README.rst
@@ -0,0 +1,51 @@
+================
+define-namespace
+================
+
+DEFINE-NAMESPACE is an R5RS macro that implements a subset of R7RS's
+DEFINE-LIBRARY.
+
+-----
+Usage
+-----
+
+Syntax::
+
+ (define-namespace namespace-name [DECL list])
+
+ DECL ::= (define defbody ...)
+ | (export [identifier list])
+ | (import [IMPORTSPEC list])
+
+ IMPORTSPEC ::= (only ns [identifier list])
+ ::= (rename ns [(identifier identifier) list]
+
+ (import-from-namespace [IMPORTSPEC list])
+
+Example::
+
+ (define-namespace ns
+ (define param 5)
+ (define (f x) (* 5 x))
+ (export f))
+
+ (define-namespace ns2
+ (import (rename ns (f g)))
+ (define (f x) (* 5 (g x)))
+ (export f))
+
+ (import-from-namespace (only ns2 f))
+
+ (f 17)
+
+---------------------
+Differences from R7RS
+---------------------
+
+* There are only EXPORT, IMPORT, and BEGIN statements.
+* DEFINE-SYNTAX does not work.
+* EXPORT statements must occur after DEFINEs.
+* IMPORT only allows for ONLY and RENAME clauses.
+* Namespace names are identifers, not lists.
+* Namespaces are Scheme objects.
+* To import outside of namespaces, use IMPORT-FROM-NAMSPACE, not IMPORT.
diff --git a/define-namespace-5.scm b/define-namespace-5.scm
new file mode 100644
index 0000000..0a9211c
--- /dev/null
+++ b/define-namespace-5.scm
@@ -0,0 +1,91 @@
+;;; Copyright (c) 2024, Peter McGoron
+;;;
+;;; Redistribution and use in source and binary forms, with or without
+;;; modification, are permitted provided that the following conditions
+;;; are met:
+;;;
+;;; 1) Redistributions of source code must retain the above copyright
+;;; notice, this list of conditions and the following disclaimer.
+;;; 2) Redistributions in binary form must reproduce the above copyright
+;;; notice, this list of conditions and the following disclaimer in the
+;;; documentation and/or other materials provided with the distribution.
+;;;
+;;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+;;; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+;;; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+;;; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+;;; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+;;; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+;;; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+;;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+;;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+;;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+;;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+;;;
+
+;;; Compatability functions.
+;;; These functions abstract the namespace container. It is implemented
+;;; as assocation lists, but by changing these functions it could be a
+;;; hash table, binary tree, etc.
+
+(define (%namespace-new) (cons '() '()))
+(define (%namespace-set! ns id val)
+ (let ((alist (car ns)))
+ (set-car! ns (cons (cons id val) alist))))
+(define (%namespace-get ns id)
+ (let ((alist (car ns)))
+ (cdr (assv id alist))))
+
+;;; Internal definitions.
+
+(define-syntax %import-from-namespace
+ (syntax-rules (rename only)
+ ((%import-from-namespace continue (only ns identifier rest-only ...) rest ...)
+ (begin
+ (define identifier (%namespace-get ns (quote identifier)))
+ (%import-from-namespace continue (only ns rest-only ...) rest ...)))
+ ((%import-from-namespace continue (only ns) rest ...)
+ (%import-from-namespace continue rest ...))
+ ((%import-from-namespace continue (rename ns (inside to) rename-rest ...) rest ...)
+ (begin
+ (define to (%namespace-get ns (quote inside)))
+ (%import-from-namespace continue (rename ns rename-rest ...) rest ...)))
+ ((%import-from-namespace continue (rename ns) rest ...)
+ (%import-from-namespace continue rest ...))
+ ((%import-from-namespace continue) continue)))
+
+(define-syntax %define-namespace
+ (syntax-rules (export import begin)
+ ((%define-namespace name (begin decls ...) rest ...)
+ (begin
+ (begin decls ...)
+ (%define-namespace name rest ...)))
+ ((%define-namespace name (export identifier exportspec ...) rest ...)
+ (begin
+ (%namespace-set! name (quote identifier) identifier)
+ (%define-namespace name (export exportspec ...) rest ...)))
+ ((%define-namespace name (export) rest ...)
+ (%define-namespace name rest ...))
+ ((%define-namespace name (import body ...) rest ...)
+ (%import-from-namespace (%define-namespace name rest ...)
+ body ...))
+ ((%define-namespace name) '())))
+
+;;; External definitions.
+
+(define-syntax define-namespace
+ (syntax-rules ()
+ ((define-namespace name body ...)
+ (begin
+ (define name (%namespace-new))
+ (let ((dummy-variable '()))
+ (%define-namespace name body ...))))))
+
+(define-syntax import-from-namespace
+ (syntax-rules ()
+ ((import-from-namespace body ...)
+ (%import-from-namespace '() body ...))))
+
+(import-from-namespace (only srfi-1 fold))
+(fold (lambda (elem acc) (+ elem acc)) 0'(1 2 3 4 5))
+
diff --git a/define-namespace-7.scm b/define-namespace-7.scm
new file mode 100644
index 0000000..6c93183
--- /dev/null
+++ b/define-namespace-7.scm
@@ -0,0 +1,21 @@
+;;; Compatability layer to translate DEFINE-NAMESPACE to R7RS's
+;;; DEFINE-LIBRARY.
+
+(define-syntax import-from-namespace
+ (syntax-rules ()
+ ((import-from-namespace body ...) (import body ...))))
+
+(define-syntax define-namespace
+ (syntax-rules ()
+ ((define-namespace ns body ...)
+ (define-library (namespace ns) body ...))))
+
+(display "hello world\n")
+
+(define-namespace blah
+ (begin
+ (define x 5)))
+
+(define-library (namespace blah)
+ (begin
+ (define (x) 5)))
diff --git a/srfi/srfi-1.scm b/srfi/srfi-1.scm
new file mode 100644
index 0000000..3194c86
--- /dev/null
+++ b/srfi/srfi-1.scm
@@ -0,0 +1,1391 @@
+;;; SRFI-1 in DEFINE-NAMESPACE.
+(define-namespace srfi-1
+ (begin ;;; SRFI-1 list-processing library -*- Scheme -*-
+ ;;; Reference implementation
+ ;;;
+ ;;; SPDX-License-Identifier: MIT
+ ;;;
+ ;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
+ ;;; this code as long as you do not remove this copyright notice or
+ ;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
+ ;;; -Olin
+ ;;; This is a library of list- and pair-processing functions. I wrote it after
+ ;;; carefully considering the functions provided by the libraries found in
+ ;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
+ ;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty
+ ;;; rich toolkit, providing a superset of the functionality found in any of
+ ;;; the various Schemes I considered.
+ ;;; This implementation is intended as a portable reference implementation
+ ;;; for SRFI-1. See the porting notes below for more information.
+ ;;; Exported:
+ ;;; xcons tree-copy make-list list-tabulate cons* list-copy
+ ;;; proper-list? circular-list? dotted-list? not-pair? null-list? list=
+ ;;; circular-list length+
+ ;;; iota
+ ;;; first second third fourth fifth sixth seventh eighth ninth tenth
+ ;;; car+cdr
+ ;;; take drop
+ ;;; take-right drop-right
+ ;;; take! drop-right!
+ ;;; split-at split-at!
+ ;;; last last-pair
+ ;;; zip unzip1 unzip2 unzip3 unzip4 unzip5
+ ;;; count
+ ;;; append! append-reverse append-reverse! concatenate concatenate!
+ ;;; unfold fold pair-fold reduce
+ ;;; unfold-right fold-right pair-fold-right reduce-right
+ ;;; append-map append-map! map! pair-for-each filter-map map-in-order
+ ;;; filter partition remove
+ ;;; filter! partition! remove!
+ ;;; find find-tail any every list-index
+ ;;; take-while drop-while take-while!
+ ;;; span break span! break!
+ ;;; delete delete!
+ ;;; alist-cons alist-copy
+ ;;; delete-duplicates delete-duplicates!
+ ;;; alist-delete alist-delete!
+ ;;; reverse!
+ ;;; lset<= lset= lset-adjoin
+ ;;; lset-union lset-intersection lset-difference lset-xor lset-diff+intersection
+ ;;; lset-union! lset-intersection! lset-difference! lset-xor! lset-diff+intersection!
+ ;;;
+ ;;; In principle, the following R4RS list- and pair-processing procedures
+ ;;; are also part of this package's exports, although they are not defined
+ ;;; in this file:
+ ;;; Primitives: cons pair? null? car cdr set-car! set-cdr!
+ ;;; Non-primitives: list length append reverse cadr ... cddddr list-ref
+ ;;; memq memv assq assv
+ ;;; (The non-primitives are defined in this file, but commented out.)
+ ;;;
+ ;;; These R4RS procedures have extended definitions in SRFI-1 and are defined
+ ;;; in this file:
+ ;;; map for-each member assoc
+ ;;;
+ ;;; The remaining two R4RS list-processing procedures are not included:
+ ;;; list-tail (use drop)
+ ;;; list? (use proper-list?)
+ ;;; A note on recursion and iteration/reversal:
+ ;;; Many iterative list-processing algorithms naturally compute the elements
+ ;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
+ ;;; the order needed to cons them into the proper answer (right-to-left, or
+ ;;; tail-then-head). One style or idiom of programming these algorithms, then,
+ ;;; loops, consing up the elements in reverse order, then destructively
+ ;;; reverses the list at the end of the loop. I do not do this. The natural
+ ;;; and efficient way to code these algorithms is recursively. This trades off
+ ;;; intermediate temporary list structure for intermediate temporary stack
+ ;;; structure. In a stack-based system, this improves cache locality and
+ ;;; lightens the load on the GC system. Don't stand on your head to iterate!
+ ;;; Recurse, where natural. Multiple-value returns make this even more
+ ;;; convenient, when the recursion/iteration has multiple state values.
+ ;;; Porting:
+ ;;; This is carefully tuned code; do not modify casually.
+ ;;; - It is careful to share storage when possible;
+ ;;; - Side-effecting code tries not to perform redundant writes.
+ ;;;
+ ;;; That said, a port of this library to a specific Scheme system might wish
+ ;;; to tune this code to exploit particulars of the implementation.
+ ;;; The single most important compiler-specific optimisation you could make
+ ;;; to this library would be to add rewrite rules or transforms to:
+ ;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
+ ;;; LSET-UNION) into multiple applications of a primitive two-argument
+ ;;; variant.
+ ;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD,
+ ;;; ANY, EVERY) into open-coded loops. The killer here is that these
+ ;;; functions are n-ary. Handling the general case is quite inefficient,
+ ;;; requiring many intermediate data structures to be allocated and
+ ;;; discarded.
+ ;;; - transform applications of procedures that take optional arguments
+ ;;; into calls to variants that do not take optional arguments. This
+ ;;; eliminates unnecessary consing and parsing of the rest parameter.
+ ;;;
+ ;;; These transforms would provide BIG speedups. In particular, the n-ary
+ ;;; mapping functions are particularly slow and cons-intensive, and are good
+ ;;; candidates for tuning. I have coded fast paths for the single-list cases,
+ ;;; but what you really want to do is exploit the fact that the compiler
+ ;;; usually knows how many arguments are being passed to a particular
+ ;;; application of these functions -- they are usually explicitly called, not
+ ;;; passed around as higher-order values. If you can arrange to have your
+ ;;; compiler produce custom code or custom linkages based on the number of
+ ;;; arguments in the call, you can speed these functions up a *lot*. But this
+ ;;; kind of compiler technology no longer exists in the Scheme world as far as
+ ;;; I can see.
+ ;;;
+ ;;; Note that this code is, of course, dependent upon standard bindings for
+ ;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
+ ;;; to the procedure that takes the car of a list. If your Scheme
+ ;;; implementation allows user code to alter the bindings of these procedures
+ ;;; in a manner that would be visible to these definitions, then there might
+ ;;; be trouble. You could consider horrible kludgery along the lines of
+ ;;; (define fact
+ ;;; (let ((= =) (- -) (* *))
+ ;;; (letrec ((real-fact (lambda (n)
+ ;;; (if (= n 0) 1 (* n (real-fact (- n 1)))))))
+ ;;; real-fact)))
+ ;;; Or you could consider shifting to a reasonable Scheme system that, say,
+ ;;; has a module system protecting code from this kind of lossage.
+ ;;;
+ ;;; This code does a fair amount of run-time argument checking. If your
+ ;;; Scheme system has a sophisticated compiler that can eliminate redundant
+ ;;; error checks, this is no problem. However, if not, these checks incur
+ ;;; some performance overhead -- and, in a safe Scheme implementation, they
+ ;;; are in some sense redundant: if we don't check to see that the PROC
+ ;;; parameter is a procedure, we'll find out anyway three lines later when
+ ;;; we try to call the value. It's pretty easy to rip all this argument
+ ;;; checking code out if it's inappropriate for your implementation -- just
+ ;;; nuke every call to CHECK-ARG.
+ ;;;
+ ;;; On the other hand, if you *do* have a sophisticated compiler that will
+ ;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
+ ;;; being the only possible candidate of which I'm aware), leaving these checks
+ ;;; in can *help*, since their presence can be elided in redundant cases,
+ ;;; and in cases where they are needed, performing the checks early, at
+ ;;; procedure entry, can "lift" a check out of a loop.
+ ;;;
+ ;;; Finally, I have only checked the properties that can portably be checked
+ ;;; with R5RS Scheme -- and this is not complete. You may wish to alter
+ ;;; the CHECK-ARG parameter checks to perform extra, implementation-specific
+ ;;; checks, such as procedure arity for higher-order values.
+ ;;;
+ ;;; The code has only these non-R4RS dependencies:
+ ;;; A few calls to an ERROR procedure;
+ ;;; Uses of the R5RS multiple-value procedure VALUES and the m-v binding
+ ;;; RECEIVE macro (which isn't R5RS, but is a trivial macro).
+ ;;; Many calls to a parameter-checking procedure check-arg:
+ ;;; (define (check-arg pred val caller)
+ ;;; (let lp ((val val))
+ ;;; (if (pred val) val (lp (error "Bad argument" val pred caller)))))
+ ;;; A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing
+ ;;; optional arguments.
+ ;;;
+ ;;; Most of these procedures use the NULL-LIST? test to trigger the
+ ;;; base case in the inner loop or recursion. The NULL-LIST? function
+ ;;; is defined to be a careful one -- it raises an error if passed a
+ ;;; non-nil, non-pair value. The spec allows an implementation to use
+ ;;; a less-careful implementation that simply defines NULL-LIST? to
+ ;;; be NOT-PAIR?. This would speed up the inner loops of these procedures
+ ;;; at the expense of having them silently accept dotted lists.
+ ;;; A note on dotted lists:
+ ;;; I, personally, take the view that the only consistent view of lists
+ ;;; in Scheme is the view that *everything* is a list -- values such as
+ ;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the
+ ;;; fact that Scheme actually has no true list type. It has a pair type,
+ ;;; and there is an *interpretation* of the trees built using this type
+ ;;; as lists.
+ ;;;
+ ;;; I lobbied to have these list-processing procedures hew to this
+ ;;; view, and accept any value as a list argument. I was overwhelmingly
+ ;;; overruled during the SRFI discussion phase. So I am inserting this
+ ;;; text in the reference lib and the SRFI spec as a sort of "minority
+ ;;; opinion" dissent.
+ ;;;
+ ;;; Many of the procedures in this library can be trivially redefined
+ ;;; to handle dotted lists, just by changing the NULL-LIST? base-case
+ ;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be
+ ;;; an empty list. For most of these procedures, that's all that is
+ ;;; required.
+ ;;;
+ ;;; However, we have to do a little more work for some procedures that
+ ;;; *produce* lists from other lists. Were we to extend these procedures to
+ ;;; accept dotted lists, we would have to define how they terminate the lists
+ ;;; produced as results when passed a dotted list. I designed a coherent set
+ ;;; of termination rules for these cases; this was posted to the SRFI-1
+ ;;; discussion list. I additionally wrote an earlier version of this library
+ ;;; that implemented that spec. It has been discarded during later phases of
+ ;;; the definition and implementation of this library.
+ ;;;
+ ;;; The argument *against* defining these procedures to work on dotted
+ ;;; lists is that dotted lists are the rare, odd case, and that by
+ ;;; arranging for the procedures to handle them, we lose error checking
+ ;;; in the cases where a dotted list is passed by accident -- e.g., when
+ ;;; the programmer swaps a two arguments to a list-processing function,
+ ;;; one being a scalar and one being a list. For example,
+ ;;; (member '(1 3 5 7 9) 7)
+ ;;; This would quietly return #f if we extended MEMBER to accept dotted
+ ;;; lists.
+ ;;;
+ ;;; The SRFI discussion record contains more discussion on this topic.
+ (define (check-arg . rest) '())
+ ;;; Constructors
+ ;;;;;;;;;;;;;;;;
+ ;;; Occasionally useful as a value to be passed to a fold or other
+ ;;; higher-order procedure.
+ (define (xcons d a) (cons a d))
+ ;;;; Recursively copy every cons.
+ (define (tree-copy x)
+ (let recur ((x x))
+ (if (not (pair? x)) x
+ (cons (recur (car x)) (recur (cdr x))))))
+ ;;; Make a list of length LEN.
+ (define (make-list len . maybe-elt)
+ (check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
+ (let ((elt (cond ((null? maybe-elt) #f) ; Default value
+ ((null? (cdr maybe-elt)) (car maybe-elt))
+ (else (error "Too many arguments to MAKE-LIST"
+ (cons len maybe-elt))))))
+ (do ((i len (- i 1))
+ (ans '() (cons elt ans)))
+ ((<= i 0) ans))))
+ ;(define (list . ans) ans) ; R4RS
+ ;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
+ (define (list-tabulate len proc)
+ (check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
+ (check-arg procedure? proc list-tabulate)
+ (do ((i (- len 1) (- i 1))
+ (ans '() (cons (proc i) ans)))
+ ((< i 0) ans)))
+ ;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
+ ;;; (cons* a1) = a1 (cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
+ ;;;
+ ;;; (cons first (unfold not-pair? car cdr rest values))
+ (define (cons* first . rest)
+ (let recur ((x first) (rest rest))
+ (if (pair? rest)
+ (cons x (recur (car rest) (cdr rest)))
+ x)))
+ ;;; (unfold not-pair? car cdr lis values)
+ (define (list-copy lis)
+ (let recur ((lis lis))
+ (if (pair? lis)
+ (cons (car lis) (recur (cdr lis)))
+ lis)))
+ ;;; IOTA count [start step] (start start+step ... start+(count-1)*step)
+ (define (iota count . maybe-start+step)
+ (check-arg integer? count iota)
+ (if (< count 0) (error "Negative step count" iota count))
+ (let-optionals maybe-start+step ((start 0) (step 1))
+ (check-arg number? start iota)
+ (check-arg number? step iota)
+ (let loop ((n 0) (r '()))
+ (if (= n count)
+ (reverse r)
+ (loop (+ 1 n)
+ (cons (+ start (* n step)) r))))))
+ ;;; I thought these were lovely, but the public at large did not share my
+ ;;; enthusiasm...
+ ;;; :IOTA to (0 ... to-1)
+ ;;; :IOTA from to (from ... to-1)
+ ;;; :IOTA from to step (from from+step ...)
+ ;;; IOTA: to (1 ... to)
+ ;;; IOTA: from to (from+1 ... to)
+ ;;; IOTA: from to step (from+step from+2step ...)
+ ;(define (%parse-iota-args arg1 rest-args proc)
+ ; (let ((check (lambda (n) (check-arg integer? n proc))))
+ ; (check arg1)
+ ; (if (pair? rest-args)
+ ; (let ((arg2 (check (car rest-args)))
+ ; (rest (cdr rest-args)))
+ ; (if (pair? rest)
+ ; (let ((arg3 (check (car rest)))
+ ; (rest (cdr rest)))
+ ; (if (pair? rest) (error "Too many parameters" proc arg1 rest-args)
+ ; (values arg1 arg2 arg3)))
+ ; (values arg1 arg2 1)))
+ ; (values 0 arg1 1))))
+ ;
+ ;(define (iota: arg1 . rest-args)
+ ; (receive (from to step) (%parse-iota-args arg1 rest-args iota:)
+ ; (let* ((numsteps (floor (/ (- to from) step)))
+ ; (last-val (+ from (* step numsteps))))
+ ; (if (< numsteps 0) (error "Negative step count" iota: from to step))
+ ; (do ((steps-left numsteps (- steps-left 1))
+ ; (val last-val (- val step))
+ ; (ans '() (cons val ans)))
+ ; ((<= steps-left 0) ans)))))
+ ;
+ ;
+ ;(define (:iota arg1 . rest-args)
+ ; (receive (from to step) (%parse-iota-args arg1 rest-args :iota)
+ ; (let* ((numsteps (ceiling (/ (- to from) step)))
+ ; (last-val (+ from (* step (- numsteps 1)))))
+ ; (if (< numsteps 0) (error "Negative step count" :iota from to step))
+ ; (do ((steps-left numsteps (- steps-left 1))
+ ; (val last-val (- val step))
+ ; (ans '() (cons val ans)))
+ ; ((<= steps-left 0) ans)))))
+ (define (circular-list val1 . vals)
+ (let ((ans (cons val1 vals)))
+ (set-cdr! (last-pair ans) ans)
+ ans))
+ ;;; <proper-list> ::= () ; Empty proper list
+ ;;; | (cons <x> <proper-list>) ; Proper-list pair
+ ;;; Note that this definition rules out circular lists -- and this
+ ;;; function is required to detect this case and return false.
+ (define (proper-list? x)
+ (let lp ((x x) (lag x))
+ (if (pair? x)
+ (let ((x (cdr x)))
+ (if (pair? x)
+ (let ((x (cdr x))
+ (lag (cdr lag)))
+ (and (not (eq? x lag)) (lp x lag)))
+ (null? x)))
+ (null? x))))
+ ;;; A dotted list is a finite list (possibly of length 0) terminated
+ ;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
+ ;;; is a dotted list of length 0.
+ ;;;
+ ;;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list
+ ;;; | (cons <x> <dotted-list>) ; Proper-list pair
+ (define (dotted-list? x)
+ (let lp ((x x) (lag x))
+ (if (pair? x)
+ (let ((x (cdr x)))
+ (if (pair? x)
+ (let ((x (cdr x))
+ (lag (cdr lag)))
+ (and (not (eq? x lag)) (lp x lag)))
+ (not (null? x))))
+ (not (null? x)))))
+ (define (circular-list? x)
+ (let lp ((x x) (lag x))
+ (and (pair? x)
+ (let ((x (cdr x)))
+ (and (pair? x)
+ (let ((x (cdr x))
+ (lag (cdr lag)))
+ (or (eq? x lag) (lp x lag))))))))
+ (define (not-pair? x) (not (pair? x))) ; Inline me.
+ ;;; This is a legal definition which is fast and sloppy:
+ ;;; (define null-list? not-pair?)
+ ;;; but we'll provide a more careful one:
+ (define (null-list? l)
+ (cond ((pair? l) #f)
+ ((null? l) #t)
+ (else (error "null-list?: argument out of domain" l))))
+ (define (list= = . lists)
+ (or (null? lists) ; special case
+ (let lp1 ((list-a (car lists)) (others (cdr lists)))
+ (or (null? others)
+ (let ((list-b (car others))
+ (others (cdr others)))
+ (if (eq? list-a list-b) ; EQ? => LIST=
+ (lp1 list-b others)
+ (let lp2 ((pair-a list-a) (pair-b list-b))
+ (if (null-list? pair-a)
+ (and (null-list? pair-b)
+ (lp1 list-b others))
+ (and (not (null-list? pair-b))
+ (= (car pair-a) (car pair-b))
+ (lp2 (cdr pair-a) (cdr pair-b)))))))))))
+ ;;; R4RS, so commented out.
+ ;(define (length x) ; LENGTH may diverge or
+ ; (let lp ((x x) (len 0)) ; raise an error if X is
+ ; (if (pair? x) ; a circular list. This version
+ ; (lp (cdr x) (+ len 1)) ; diverges.
+ ; len)))
+ (define (length+ x) ; Returns #f if X is circular.
+ (let lp ((x x) (lag x) (len 0))
+ (if (pair? x)
+ (let ((x (cdr x))
+ (len (+ len 1)))
+ (if (pair? x)
+ (let ((x (cdr x))
+ (lag (cdr lag))
+ (len (+ len 1)))
+ (and (not (eq? x lag)) (lp x lag len)))
+ len))
+ len)))
+ (define (zip list1 . more-lists) (apply map list list1 more-lists))
+ ;;; Selectors
+ ;;;;;;;;;;;;;
+ ;;; R4RS non-primitives:
+ ;(define (caar x) (car (car x)))
+ ;(define (cadr x) (car (cdr x)))
+ ;(define (cdar x) (cdr (car x)))
+ ;(define (cddr x) (cdr (cdr x)))
+ ;
+ ;(define (caaar x) (caar (car x)))
+ ;(define (caadr x) (caar (cdr x)))
+ ;(define (cadar x) (cadr (car x)))
+ ;(define (caddr x) (cadr (cdr x)))
+ ;(define (cdaar x) (cdar (car x)))
+ ;(define (cdadr x) (cdar (cdr x)))
+ ;(define (cddar x) (cddr (car x)))
+ ;(define (cdddr x) (cddr (cdr x)))
+ ;
+ ;(define (caaaar x) (caaar (car x)))
+ ;(define (caaadr x) (caaar (cdr x)))
+ ;(define (caadar x) (caadr (car x)))
+ ;(define (caaddr x) (caadr (cdr x)))
+ ;(define (cadaar x) (cadar (car x)))
+ ;(define (cadadr x) (cadar (cdr x)))
+ ;(define (caddar x) (caddr (car x)))
+ ;(define (cadddr x) (caddr (cdr x)))
+ ;(define (cdaaar x) (cdaar (car x)))
+ ;(define (cdaadr x) (cdaar (cdr x)))
+ ;(define (cdadar x) (cdadr (car x)))
+ ;(define (cdaddr x) (cdadr (cdr x)))
+ ;(define (cddaar x) (cddar (car x)))
+ ;(define (cddadr x) (cddar (cdr x)))
+ ;(define (cdddar x) (cdddr (car x)))
+ ;(define (cddddr x) (cdddr (cdr x)))
+ (define first car)
+ (define second cadr)
+ (define third caddr)
+ (define fourth cadddr)
+ (define (fifth x) (car (cddddr x)))
+ (define (sixth x) (cadr (cddddr x)))
+ (define (seventh x) (caddr (cddddr x)))
+ (define (eighth x) (cadddr (cddddr x)))
+ (define (ninth x) (car (cddddr (cddddr x))))
+ (define (tenth x) (cadr (cddddr (cddddr x))))
+ (define (car+cdr pair) (values (car pair) (cdr pair)))
+ ;;; take & drop
+ (define (take lis k)
+ (check-arg integer? k take)
+ (let recur ((lis lis) (k k))
+ (if (zero? k) '()
+ (cons (car lis)
+ (recur (cdr lis) (- k 1))))))
+ (define (drop lis k)
+ (check-arg integer? k drop)
+ (let iter ((lis lis) (k k))
+ (if (zero? k) lis (iter (cdr lis) (- k 1)))))
+ (define (take! lis k)
+ (check-arg integer? k take!)
+ (if (zero? k) '()
+ (begin (set-cdr! (drop lis (- k 1)) '())
+ lis)))
+ ;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
+ ;;; off by K, then chasing down the list until the lead pointer falls off
+ ;;; the end.
+ (define (take-right lis k)
+ (check-arg integer? k take-right)
+ (let lp ((lag lis) (lead (drop lis k)))
+ (if (pair? lead)
+ (lp (cdr lag) (cdr lead))
+ lag)))
+ (define (drop-right lis k)
+ (check-arg integer? k drop-right)
+ (let recur ((lag lis) (lead (drop lis k)))
+ (if (pair? lead)
+ (cons (car lag) (recur (cdr lag) (cdr lead)))
+ '())))
+ ;;; In this function, LEAD is actually K+1 ahead of LAG. This lets
+ ;;; us stop LAG one step early, in time to smash its cdr to ().
+ (define (drop-right! lis k)
+ (check-arg integer? k drop-right!)
+ (let ((lead (drop lis k)))
+ (if (pair? lead)
+ (let lp ((lag lis) (lead (cdr lead))) ; Standard case
+ (if (pair? lead)
+ (lp (cdr lag) (cdr lead))
+ (begin (set-cdr! lag '())
+ lis)))
+ '()))) ; Special case dropping everything -- no cons to side-effect.
+ ;(define (list-ref lis i) (car (drop lis i))) ; R4RS
+ ;;; These use the APL convention, whereby negative indices mean
+ ;;; "from the right." I liked them, but they didn't win over the
+ ;;; SRFI reviewers.
+ ;;; K >= 0: Take and drop K elts from the front of the list.
+ ;;; K <= 0: Take and drop -K elts from the end of the list.
+ ;(define (take lis k)
+ ; (check-arg integer? k take)
+ ; (if (negative? k)
+ ; (list-tail lis (+ k (length lis)))
+ ; (let recur ((lis lis) (k k))
+ ; (if (zero? k) '()
+ ; (cons (car lis)
+ ; (recur (cdr lis) (- k 1)))))))
+ ;
+ ;(define (drop lis k)
+ ; (check-arg integer? k drop)
+ ; (if (negative? k)
+ ; (let recur ((lis lis) (nelts (+ k (length lis))))
+ ; (if (zero? nelts) '()
+ ; (cons (car lis)
+ ; (recur (cdr lis) (- nelts 1)))))
+ ; (list-tail lis k)))
+ ;
+ ;
+ ;(define (take! lis k)
+ ; (check-arg integer? k take!)
+ ; (cond ((zero? k) '())
+ ; ((positive? k)
+ ; (set-cdr! (list-tail lis (- k 1)) '())
+ ; lis)
+ ; (else (list-tail lis (+ k (length lis))))))
+ ;
+ ;(define (drop! lis k)
+ ; (check-arg integer? k drop!)
+ ; (if (negative? k)
+ ; (let ((nelts (+ k (length lis))))
+ ; (if (zero? nelts) '()
+ ; (begin (set-cdr! (list-tail lis (- nelts 1)) '())
+ ; lis)))
+ ; (list-tail lis k)))
+ (define (split-at x k)
+ (check-arg integer? k split-at)
+ (let recur ((lis x) (k k))
+ (if (zero? k) (values '() lis)
+ (receive (prefix suffix) (recur (cdr lis) (- k 1))
+ (values (cons (car lis) prefix) suffix)))))
+ (define (split-at! x k)
+ (check-arg integer? k split-at!)
+ (if (zero? k) (values '() x)
+ (let* ((prev (drop x (- k 1)))
+ (suffix (cdr prev)))
+ (set-cdr! prev '())
+ (values x suffix))))
+ (define (last lis) (car (last-pair lis)))
+ (define (last-pair lis)
+ (check-arg pair? lis last-pair)
+ (let lp ((lis lis))
+ (let ((tail (cdr lis)))
+ (if (pair? tail) (lp tail) lis))))
+ ;;; Unzippers -- 1 through 5
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ (define (unzip1 lis) (map car lis))
+ (define (unzip2 lis)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
+ (let ((elt (car lis))) ; dotted lists.
+ (receive (a b) (recur (cdr lis))
+ (values (cons (car elt) a)
+ (cons (cadr elt) b)))))))
+ (define (unzip3 lis)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values lis lis lis)
+ (let ((elt (car lis)))
+ (receive (a b c) (recur (cdr lis))
+ (values (cons (car elt) a)
+ (cons (cadr elt) b)
+ (cons (caddr elt) c)))))))
+ (define (unzip4 lis)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values lis lis lis lis)
+ (let ((elt (car lis)))
+ (receive (a b c d) (recur (cdr lis))
+ (values (cons (car elt) a)
+ (cons (cadr elt) b)
+ (cons (caddr elt) c)
+ (cons (cadddr elt) d)))))))
+ (define (unzip5 lis)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values lis lis lis lis lis)
+ (let ((elt (car lis)))
+ (receive (a b c d e) (recur (cdr lis))
+ (values (cons (car elt) a)
+ (cons (cadr elt) b)
+ (cons (caddr elt) c)
+ (cons (cadddr elt) d)
+ (cons (car (cddddr elt)) e)))))))
+ ;;; append! append-reverse append-reverse! concatenate concatenate!
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ (define (append! . lists)
+ ;; First, scan through lists looking for a non-empty one.
+ (let lp ((lists lists) (prev '()))
+ (if (not (pair? lists)) prev
+ (let ((first (car lists))
+ (rest (cdr lists)))
+ (if (not (pair? first)) (lp rest first)
+ ;; Now, do the splicing.
+ (let lp2 ((tail-cons (last-pair first))
+ (rest rest))
+ (if (pair? rest)
+ (let ((next (car rest))
+ (rest (cdr rest)))
+ (set-cdr! tail-cons next)
+ (lp2 (if (pair? next) (last-pair next) tail-cons)
+ rest))
+ first)))))))
+ ;;; APPEND is R4RS.
+ ;(define (append . lists)
+ ; (if (pair? lists)
+ ; (let recur ((list1 (car lists)) (lists (cdr lists)))
+ ; (if (pair? lists)
+ ; (let ((tail (recur (car lists) (cdr lists))))
+ ; (fold-right cons tail list1)) ; Append LIST1 & TAIL.
+ ; list1))
+ ; '()))
+ ;(define (append-reverse rev-head tail) (fold cons tail rev-head))
+ ;(define (append-reverse! rev-head tail)
+ ; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
+ ; tail
+ ; rev-head))
+ ;;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
+ (define (append-reverse rev-head tail)
+ (let lp ((rev-head rev-head) (tail tail))
+ (if (null-list? rev-head) tail
+ (lp (cdr rev-head) (cons (car rev-head) tail)))))
+ (define (append-reverse! rev-head tail)
+ (let lp ((rev-head rev-head) (tail tail))
+ (if (null-list? rev-head) tail
+ (let ((next-rev (cdr rev-head)))
+ (set-cdr! rev-head tail)
+ (lp next-rev rev-head)))))
+ (define (concatenate lists) (reduce-right append '() lists))
+ (define (concatenate! lists) (reduce-right append! '() lists))
+ ;;; Fold/map internal utilities
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;; These little internal utilities are used by the general
+ ;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
+ ;;; One the other hand, the n-ary cases are painfully inefficient as it is.
+ ;;; An aggressive implementation should simply re-write these functions
+ ;;; for raw efficiency; I have written them for as much clarity, portability,
+ ;;; and simplicity as can be achieved.
+ ;;;
+ ;;; I use the dreaded call/cc to do local aborts. A good compiler could
+ ;;; handle this with extreme efficiency. An implementation that provides
+ ;;; a one-shot, non-persistent continuation grabber could help the compiler
+ ;;; out by using that in place of the call/cc's in these routines.
+ ;;;
+ ;;; These functions have funky definitions that are precisely tuned to
+ ;;; the needs of the fold/map procs -- for example, to minimize the number
+ ;;; of times the argument lists need to be examined.
+ ;;; Return (map cdr lists).
+ ;;; However, if any element of LISTS is empty, just abort and return '().
+ (define (%cdrs lists)
+ (call-with-current-continuation
+ (lambda (abort)
+ (let recur ((lists lists))
+ (if (pair? lists)
+ (let ((lis (car lists)))
+ (if (null-list? lis) (abort '())
+ (cons (cdr lis) (recur (cdr lists)))))
+ '())))))
+ (define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
+ (let recur ((lists lists))
+ (if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
+ ;;; LISTS is a (not very long) non-empty list of lists.
+ ;;; Return two lists: the cars & the cdrs of the lists.
+ ;;; However, if any of the lists is empty, just abort and return [() ()].
+ (define (%cars+cdrs lists)
+ (call-with-current-continuation
+ (lambda (abort)
+ (let recur ((lists lists))
+ (if (pair? lists)
+ (receive (list other-lists) (car+cdr lists)
+ (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
+ (receive (a d) (car+cdr list)
+ (receive (cars cdrs) (recur other-lists)
+ (values (cons a cars) (cons d cdrs))))))
+ (values '() '()))))))
+ ;;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
+ ;;; cars list. What a hack.
+ (define (%cars+cdrs+ lists cars-final)
+ (call-with-current-continuation
+ (lambda (abort)
+ (let recur ((lists lists))
+ (if (pair? lists)
+ (receive (list other-lists) (car+cdr lists)
+ (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
+ (receive (a d) (car+cdr list)
+ (receive (cars cdrs) (recur other-lists)
+ (values (cons a cars) (cons d cdrs))))))
+ (values (list cars-final) '()))))))
+ ;;; Like %CARS+CDRS, but blow up if any list is empty.
+ (define (%cars+cdrs/no-test lists)
+ (let recur ((lists lists))
+ (if (pair? lists)
+ (receive (list other-lists) (car+cdr lists)
+ (receive (a d) (car+cdr list)
+ (receive (cars cdrs) (recur other-lists)
+ (values (cons a cars) (cons d cdrs)))))
+ (values '() '()))))
+ ;;; count
+ ;;;;;;;;;
+ (define (count pred list1 . lists)
+ (check-arg procedure? pred count)
+ (if (pair? lists)
+ ;; N-ary case
+ (let lp ((list1 list1) (lists lists) (i 0))
+ (if (null-list? list1) i
+ (receive (as ds) (%cars+cdrs lists)
+ (if (null? as) i
+ (lp (cdr list1) ds
+ (if (apply pred (car list1) as) (+ i 1) i))))))
+ ;; Fast path
+ (let lp ((lis list1) (i 0))
+ (if (null-list? lis) i
+ (lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
+ ;;; fold/unfold
+ ;;;;;;;;;;;;;;;
+ (define (unfold-right p f g seed . maybe-tail)
+ (check-arg procedure? p unfold-right)
+ (check-arg procedure? f unfold-right)
+ (check-arg procedure? g unfold-right)
+ (let lp ((seed seed) (ans (:optional maybe-tail '())))
+ (if (p seed) ans
+ (lp (g seed)
+ (cons (f seed) ans)))))
+ (define (unfold p f g seed . maybe-tail-gen)
+ (check-arg procedure? p unfold)
+ (check-arg procedure? f unfold)
+ (check-arg procedure? g unfold)
+ (if (pair? maybe-tail-gen)
+ (let ((tail-gen (car maybe-tail-gen)))
+ (if (pair? (cdr maybe-tail-gen))
+ (apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
+ (let recur ((seed seed))
+ (if (p seed) (tail-gen seed)
+ (cons (f seed) (recur (g seed)))))))
+ (let recur ((seed seed))
+ (if (p seed) '()
+ (cons (f seed) (recur (g seed)))))))
+ (define (fold kons knil lis1 . lists)
+ (check-arg procedure? kons fold)
+ (if (pair? lists)
+ (let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
+ (receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
+ (if (null? cars+ans) ans ; Done.
+ (lp cdrs (apply kons cars+ans)))))
+ (let lp ((lis lis1) (ans knil)) ; Fast path
+ (if (null-list? lis) ans
+ (lp (cdr lis) (kons (car lis) ans))))))
+ (define (fold-right kons knil lis1 . lists)
+ (check-arg procedure? kons fold-right)
+ (if (pair? lists)
+ (let recur ((lists (cons lis1 lists))) ; N-ary case
+ (let ((cdrs (%cdrs lists)))
+ (if (null? cdrs) knil
+ (apply kons (%cars+ lists (recur cdrs))))))
+ (let recur ((lis lis1)) ; Fast path
+ (if (null-list? lis) knil
+ (let ((head (car lis)))
+ (kons head (recur (cdr lis))))))))
+ (define (pair-fold-right f zero lis1 . lists)
+ (check-arg procedure? f pair-fold-right)
+ (if (pair? lists)
+ (let recur ((lists (cons lis1 lists))) ; N-ary case
+ (let ((cdrs (%cdrs lists)))
+ (if (null? cdrs) zero
+ (apply f (append! lists (list (recur cdrs)))))))
+ (let recur ((lis lis1)) ; Fast path
+ (if (null-list? lis) zero (f lis (recur (cdr lis)))))))
+ (define (pair-fold f zero lis1 . lists)
+ (check-arg procedure? f pair-fold)
+ (if (pair? lists)
+ (let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
+ (let ((tails (%cdrs lists)))
+ (if (null? tails) ans
+ (lp tails (apply f (append! lists (list ans)))))))
+ (let lp ((lis lis1) (ans zero))
+ (if (null-list? lis) ans
+ (let ((tail (cdr lis))) ; Grab the cdr now,
+ (lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
+ ;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
+ ;;; These cannot meaningfully be n-ary.
+ (define (reduce f ridentity lis)
+ (check-arg procedure? f reduce)
+ (if (null-list? lis) ridentity
+ (fold f (car lis) (cdr lis))))
+ (define (reduce-right f ridentity lis)
+ (check-arg procedure? f reduce-right)
+ (if (null-list? lis) ridentity
+ (let recur ((head (car lis)) (lis (cdr lis)))
+ (if (pair? lis)
+ (f head (recur (car lis) (cdr lis)))
+ head))))
+ ;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ (define (append-map f lis1 . lists)
+ (really-append-map append-map append f lis1 lists))
+ (define (append-map! f lis1 . lists)
+ (really-append-map append-map! append! f lis1 lists))
+ (define (really-append-map who appender f lis1 lists)
+ (check-arg procedure? f who)
+ (if (pair? lists)
+ (receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
+ (if (null? cars) '()
+ (let recur ((cars cars) (cdrs cdrs))
+ (let ((vals (apply f cars)))
+ (receive (cars2 cdrs2) (%cars+cdrs cdrs)
+ (if (null? cars2) vals
+ (appender vals (recur cars2 cdrs2))))))))
+ ;; Fast path
+ (if (null-list? lis1) '()
+ (let recur ((elt (car lis1)) (rest (cdr lis1)))
+ (let ((vals (f elt)))
+ (if (null-list? rest) vals
+ (appender vals (recur (car rest) (cdr rest)))))))))
+ (define (pair-for-each proc lis1 . lists)
+ (check-arg procedure? proc pair-for-each)
+ (if (pair? lists)
+ (let lp ((lists (cons lis1 lists)))
+ (let ((tails (%cdrs lists)))
+ (if (pair? tails)
+ (begin (apply proc lists)
+ (lp tails)))))
+ ;; Fast path.
+ (let lp ((lis lis1))
+ (if (not (null-list? lis))
+ (let ((tail (cdr lis))) ; Grab the cdr now,
+ (proc lis) ; in case PROC SET-CDR!s LIS.
+ (lp tail))))))
+ ;;; We stop when LIS1 runs out, not when any list runs out.
+ (define (map! f lis1 . lists)
+ (check-arg procedure? f map!)
+ (if (pair? lists)
+ (let lp ((lis1 lis1) (lists lists))
+ (if (not (null-list? lis1))
+ (receive (heads tails) (%cars+cdrs/no-test lists)
+ (set-car! lis1 (apply f (car lis1) heads))
+ (lp (cdr lis1) tails))))
+ ;; Fast path.
+ (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
+ lis1)
+ ;;; Map F across L, and save up all the non-false results.
+ (define (filter-map f lis1 . lists)
+ (check-arg procedure? f filter-map)
+ (if (pair? lists)
+ (let recur ((lists (cons lis1 lists)))
+ (receive (cars cdrs) (%cars+cdrs lists)
+ (if (pair? cars)
+ (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
+ (else (recur cdrs))) ; Tail call in this arm.
+ '())))
+ ;; Fast path.
+ (let recur ((lis lis1))
+ (if (null-list? lis) lis
+ (let ((tail (recur (cdr lis))))
+ (cond ((f (car lis)) => (lambda (x) (cons x tail)))
+ (else tail)))))))
+ ;;; Map F across lists, guaranteeing to go left-to-right.
+ ;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
+ ;;; in which case this procedure may simply be defined as a synonym for MAP.
+ (define (map-in-order f lis1 . lists)
+ (check-arg procedure? f map-in-order)
+ (if (pair? lists)
+ (let recur ((lists (cons lis1 lists)))
+ (receive (cars cdrs) (%cars+cdrs lists)
+ (if (pair? cars)
+ (let ((x (apply f cars))) ; Do head first,
+ (cons x (recur cdrs))) ; then tail.
+ '())))
+ ;; Fast path.
+ (let recur ((lis lis1))
+ (if (null-list? lis) lis
+ (let ((tail (cdr lis))
+ (x (f (car lis)))) ; Do head first,
+ (cons x (recur tail))))))) ; then tail.
+ ;;; We extend MAP to handle arguments of unequal length.
+ (define map map-in-order)
+ ;;; filter, remove, partition
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
+ ;;; disorder the elements of their argument.
+ ;; This FILTER shares the longest tail of L that has no deleted elements.
+ ;; If Scheme had multi-continuation calls, they could be made more efficient.
+ (define (filter pred lis) ; Sleazing with EQ? makes this
+ (check-arg procedure? pred filter) ; one faster.
+ (let recur ((lis lis))
+ (if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
+ (let ((head (car lis))
+ (tail (cdr lis)))
+ (if (pred head)
+ (let ((new-tail (recur tail))) ; Replicate the RECUR call so
+ (if (eq? tail new-tail) lis
+ (cons head new-tail)))
+ (recur tail)))))) ; this one can be a tail call.
+ ;;; Another version that shares longest tail.
+ ;(define (filter pred lis)
+ ; (receive (ans no-del?)
+ ; ;; (recur l) returns L with (pred x) values filtered.
+ ; ;; It also returns a flag NO-DEL? if the returned value
+ ; ;; is EQ? to L, i.e. if it didn't have to delete anything.
+ ; (let recur ((l l))
+ ; (if (null-list? l) (values l #t)
+ ; (let ((x (car l))
+ ; (tl (cdr l)))
+ ; (if (pred x)
+ ; (receive (ans no-del?) (recur tl)
+ ; (if no-del?
+ ; (values l #t)
+ ; (values (cons x ans) #f)))
+ ; (receive (ans no-del?) (recur tl) ; Delete X.
+ ; (values ans #f))))))
+ ; ans))
+ ;(define (filter! pred lis) ; Things are much simpler
+ ; (let recur ((lis lis)) ; if you are willing to
+ ; (if (pair? lis) ; push N stack frames & do N
+ ; (cond ((pred (car lis)) ; SET-CDR! writes, where N is
+ ; (set-cdr! lis (recur (cdr lis))); the length of the answer.
+ ; lis)
+ ; (else (recur (cdr lis))))
+ ; lis)))
+ ;;; This implementation of FILTER!
+ ;;; - doesn't cons, and uses no stack;
+ ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
+ ;;; usually expensive on modern machines, and can be extremely expensive on
+ ;;; modern Schemes (e.g., ones that have generational GC's).
+ ;;; It just zips down contiguous runs of in and out elts in LIS doing the
+ ;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the
+ ;;; beginning of the next.
+ (define (filter! pred lis)
+ (check-arg procedure? pred filter!)
+ (let lp ((ans lis))
+ (cond ((null-list? ans) ans) ; Scan looking for
+ ((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
+ ;; ANS is the eventual answer.
+ ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
+ ;; Scan over a contiguous segment of the list that
+ ;; satisfies PRED.
+ ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
+ ;; segment of the list that *doesn't* satisfy PRED.
+ ;; When the segment ends, patch in a link from PREV
+ ;; to the start of the next good segment, and jump to
+ ;; SCAN-IN.
+ (else (letrec ((scan-in (lambda (prev lis)
+ (if (pair? lis)
+ (if (pred (car lis))
+ (scan-in lis (cdr lis))
+ (scan-out prev (cdr lis))))))
+ (scan-out (lambda (prev lis)
+ (let lp ((lis lis))
+ (if (pair? lis)
+ (if (pred (car lis))
+ (begin (set-cdr! prev lis)
+ (scan-in lis (cdr lis)))
+ (lp (cdr lis)))
+ (set-cdr! prev lis))))))
+ (scan-in ans (cdr ans))
+ ans)))))
+ ;;; Answers share common tail with LIS where possible;
+ ;;; the technique is slightly subtle.
+ (define (partition pred lis)
+ (check-arg procedure? pred partition)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
+ (let ((elt (car lis))
+ (tail (cdr lis)))
+ (receive (in out) (recur tail)
+ (if (pred elt)
+ (values (if (pair? out) (cons elt in) lis) out)
+ (values in (if (pair? in) (cons elt out) lis))))))))
+ ;(define (partition! pred lis) ; Things are much simpler
+ ; (let recur ((lis lis)) ; if you are willing to
+ ; (if (null-list? lis) (values lis lis) ; push N stack frames & do N
+ ; (let ((elt (car lis))) ; SET-CDR! writes, where N is
+ ; (receive (in out) (recur (cdr lis)) ; the length of LIS.
+ ; (cond ((pred elt)
+ ; (set-cdr! lis in)
+ ; (values lis out))
+ ; (else (set-cdr! lis out)
+ ; (values in lis))))))))
+ ;;; This implementation of PARTITION!
+ ;;; - doesn't cons, and uses no stack;
+ ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
+ ;;; usually expensive on modern machines, and can be extremely expensive on
+ ;;; modern Schemes (e.g., ones that have generational GC's).
+ ;;; It just zips down contiguous runs of in and out elts in LIS doing the
+ ;;; minimal number of SET-CDR!s to splice these runs together into the result
+ ;;; lists.
+ (define (partition! pred lis)
+ (check-arg procedure? pred partition!)
+ (if (null-list? lis) (values lis lis)
+ ;; This pair of loops zips down contiguous in & out runs of the
+ ;; list, splicing the runs together. The invariants are
+ ;; SCAN-IN: (cdr in-prev) = LIS.
+ ;; SCAN-OUT: (cdr out-prev) = LIS.
+ (letrec ((scan-in (lambda (in-prev out-prev lis)
+ (let lp ((in-prev in-prev) (lis lis))
+ (if (pair? lis)
+ (if (pred (car lis))
+ (lp lis (cdr lis))
+ (begin (set-cdr! out-prev lis)
+ (scan-out in-prev lis (cdr lis))))
+ (set-cdr! out-prev lis))))) ; Done.
+ (scan-out (lambda (in-prev out-prev lis)
+ (let lp ((out-prev out-prev) (lis lis))
+ (if (pair? lis)
+ (if (pred (car lis))
+ (begin (set-cdr! in-prev lis)
+ (scan-in lis out-prev (cdr lis)))
+ (lp lis (cdr lis)))
+ (set-cdr! in-prev lis)))))) ; Done.
+ ;; Crank up the scan&splice loops.
+ (if (pred (car lis))
+ ;; LIS begins in-list. Search for out-list's first pair.
+ (let lp ((prev-l lis) (l (cdr lis)))
+ (cond ((not (pair? l)) (values lis l))
+ ((pred (car l)) (lp l (cdr l)))
+ (else (scan-out prev-l l (cdr l))
+ (values lis l)))) ; Done.
+ ;; LIS begins out-list. Search for in-list's first pair.
+ (let lp ((prev-l lis) (l (cdr lis)))
+ (cond ((not (pair? l)) (values l lis))
+ ((pred (car l))
+ (scan-in l prev-l (cdr l))
+ (values l lis)) ; Done.
+ (else (lp l (cdr l)))))))))
+ ;;; Inline us, please.
+ (define (remove pred l) (filter (lambda (x) (not (pred x))) l))
+ (define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
+ ;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions.
+ ;;; (I don't actually think these are the world's most important
+ ;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants
+ ;;; are far more general.)
+ ;;;
+ ;;; Function Action
+ ;;; ---------------------------------------------------------------------------
+ ;;; remove pred lis Delete by general predicate
+ ;;; delete x lis [=] Delete by element comparison
+ ;;;
+ ;;; find pred lis Search by general predicate
+ ;;; find-tail pred lis Search by general predicate
+ ;;; member x lis [=] Search by element comparison
+ ;;;
+ ;;; assoc key lis [=] Search alist by key comparison
+ ;;; alist-delete key alist [=] Alist-delete by key comparison
+ (define (delete x lis . maybe-=)
+ (let ((= (:optional maybe-= equal?)))
+ (filter (lambda (y) (not (= x y))) lis)))
+ (define (delete! x lis . maybe-=)
+ (let ((= (:optional maybe-= equal?)))
+ (filter! (lambda (y) (not (= x y))) lis)))
+ ;;; Extended from R4RS to take an optional comparison argument.
+ (define (member x lis . maybe-=)
+ (let ((= (:optional maybe-= equal?)))
+ (find-tail (lambda (y) (= x y)) lis)))
+ ;;; R4RS, hence we don't bother to define.
+ ;;; The MEMBER and then FIND-TAIL call should definitely
+ ;;; be inlined for MEMQ & MEMV.
+ ;(define (memq x lis) (member x lis eq?))
+ ;(define (memv x lis) (member x lis eqv?))
+ ;;; right-duplicate deletion
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;; delete-duplicates delete-duplicates!
+ ;;;
+ ;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
+ ;;; in long lists, sort the list to bring duplicates together, then use a
+ ;;; linear-time algorithm to kill the dups. Or use an algorithm based on
+ ;;; element-marking. The former gives you O(n lg n), the latter is linear.
+ (define (delete-duplicates lis . maybe-=)
+ (let ((elt= (:optional maybe-= equal?)))
+ (check-arg procedure? elt= delete-duplicates)
+ (let recur ((lis lis))
+ (if (null-list? lis) lis
+ (let* ((x (car lis))
+ (tail (cdr lis))
+ (new-tail (recur (delete x tail elt=))))
+ (if (eq? tail new-tail) lis (cons x new-tail)))))))
+ (define (delete-duplicates! lis . maybe-=)
+ (let ((elt= (:optional maybe-= equal?)))
+ (check-arg procedure? elt= delete-duplicates!)
+ (let recur ((lis lis))
+ (if (null-list? lis) lis
+ (let* ((x (car lis))
+ (tail (cdr lis))
+ (new-tail (recur (delete! x tail elt=))))
+ (if (eq? tail new-tail) lis (cons x new-tail)))))))
+ ;;; alist stuff
+ ;;;;;;;;;;;;;;;
+ ;;; Extended from R4RS to take an optional comparison argument.
+ ;;; (define (assoc x lis . maybe-=)
+ ;;; (let ((= (:optional maybe-= equal?)))
+ ;;; (find (lambda (entry) (= x (car entry))) lis)))
+ (define (alist-cons key datum alist) (cons (cons key datum) alist))
+ (define (alist-copy alist)
+ (map (lambda (elt) (cons (car elt) (cdr elt)))
+ alist))
+ (define (alist-delete key alist . maybe-=)
+ (let ((= (:optional maybe-= equal?)))
+ (filter (lambda (elt) (not (= key (car elt)))) alist)))
+ (define (alist-delete! key alist . maybe-=)
+ (let ((= (:optional maybe-= equal?)))
+ (filter! (lambda (elt) (not (= key (car elt)))) alist)))
+ ;;; find find-tail take-while drop-while span break any every list-index
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ (define (find pred list)
+ (cond ((find-tail pred list) => car)
+ (else #f)))
+ (define (find-tail pred list)
+ (check-arg procedure? pred find-tail)
+ (let lp ((list list))
+ (and (not (null-list? list))
+ (if (pred (car list)) list
+ (lp (cdr list))))))
+ (define (take-while pred lis)
+ (check-arg procedure? pred take-while)
+ (let recur ((lis lis))
+ (if (null-list? lis) '()
+ (let ((x (car lis)))
+ (if (pred x)
+ (cons x (recur (cdr lis)))
+ '())))))
+ (define (drop-while pred lis)
+ (check-arg procedure? pred drop-while)
+ (let lp ((lis lis))
+ (if (null-list? lis) '()
+ (if (pred (car lis))
+ (lp (cdr lis))
+ lis))))
+ (define (take-while! pred lis)
+ (check-arg procedure? pred take-while!)
+ (if (or (null-list? lis) (not (pred (car lis)))) '()
+ (begin (let lp ((prev lis) (rest (cdr lis)))
+ (if (pair? rest)
+ (let ((x (car rest)))
+ (if (pred x) (lp rest (cdr rest))
+ (set-cdr! prev '())))))
+ lis)))
+ (define (span pred lis)
+ (check-arg procedure? pred span)
+ (let recur ((lis lis))
+ (if (null-list? lis) (values '() '())
+ (let ((x (car lis)))
+ (if (pred x)
+ (receive (prefix suffix) (recur (cdr lis))
+ (values (cons x prefix) suffix))
+ (values '() lis))))))
+ (define (span! pred lis)
+ (check-arg procedure? pred span!)
+ (if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
+ (let ((suffix (let lp ((prev lis) (rest (cdr lis)))
+ (if (null-list? rest) rest
+ (let ((x (car rest)))
+ (if (pred x) (lp rest (cdr rest))
+ (begin (set-cdr! prev '())
+ rest)))))))
+ (values lis suffix))))
+ (define (break pred lis) (span (lambda (x) (not (pred x))) lis))
+ (define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
+ (define (any pred lis1 . lists)
+ (check-arg procedure? pred any)
+ (if (pair? lists)
+ ;; N-ary case
+ (receive (heads tails) (%cars+cdrs (cons lis1 lists))
+ (and (pair? heads)
+ (let lp ((heads heads) (tails tails))
+ (receive (next-heads next-tails) (%cars+cdrs tails)
+ (if (pair? next-heads)
+ (or (apply pred heads) (lp next-heads next-tails))
+ (apply pred heads)))))) ; Last PRED app is tail call.
+ ;; Fast path
+ (and (not (null-list? lis1))
+ (let lp ((head (car lis1)) (tail (cdr lis1)))
+ (if (null-list? tail)
+ (pred head) ; Last PRED app is tail call.
+ (or (pred head) (lp (car tail) (cdr tail))))))))
+ ;(define (every pred list) ; Simple definition.
+ ; (let lp ((list list)) ; Doesn't return the last PRED value.
+ ; (or (not (pair? list))
+ ; (and (pred (car list))
+ ; (lp (cdr list))))))
+ (define (every pred lis1 . lists)
+ (check-arg procedure? pred every)
+ (if (pair? lists)
+ ;; N-ary case
+ (receive (heads tails) (%cars+cdrs (cons lis1 lists))
+ (or (not (pair? heads))
+ (let lp ((heads heads) (tails tails))
+ (receive (next-heads next-tails) (%cars+cdrs tails)
+ (if (pair? next-heads)
+ (and (apply pred heads) (lp next-heads next-tails))
+ (apply pred heads)))))) ; Last PRED app is tail call.
+ ;; Fast path
+ (or (null-list? lis1)
+ (let lp ((head (car lis1)) (tail (cdr lis1)))
+ (if (null-list? tail)
+ (pred head) ; Last PRED app is tail call.
+ (and (pred head) (lp (car tail) (cdr tail))))))))
+ (define (list-index pred lis1 . lists)
+ (check-arg procedure? pred list-index)
+ (if (pair? lists)
+ ;; N-ary case
+ (let lp ((lists (cons lis1 lists)) (n 0))
+ (receive (heads tails) (%cars+cdrs lists)
+ (and (pair? heads)
+ (if (apply pred heads) n
+ (lp tails (+ n 1))))))
+ ;; Fast path
+ (let lp ((lis lis1) (n 0))
+ (and (not (null-list? lis))
+ (if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
+ ;;; Reverse
+ ;;;;;;;;;;;
+ ;R4RS, so not defined here.
+ ;(define (reverse lis) (fold cons '() lis))
+ ;(define (reverse! lis)
+ ; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis))
+ (define (reverse! lis)
+ (let lp ((lis lis) (ans '()))
+ (if (null-list? lis) ans
+ (let ((tail (cdr lis)))
+ (set-cdr! lis ans)
+ (lp tail lis)))))
+ ;;; Lists-as-sets
+ ;;;;;;;;;;;;;;;;;
+ ;;; This is carefully tuned code; do not modify casually.
+ ;;; - It is careful to share storage when possible;
+ ;;; - Side-effecting code tries not to perform redundant writes.
+ ;;; - It tries to avoid linear-time scans in special cases where constant-time
+ ;;; computations can be performed.
+ ;;; - It relies on similar properties from the other list-lib procs it calls.
+ ;;; For example, it uses the fact that the implementations of MEMBER and
+ ;;; FILTER in this source code share longest common tails between args
+ ;;; and results to get structure sharing in the lset procedures.
+ (define (%lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
+ (define (lset<= = . lists)
+ (check-arg procedure? = lset<=)
+ (or (not (pair? lists)) ; 0-ary case
+ (let lp ((s1 (car lists)) (rest (cdr lists)))
+ (or (not (pair? rest))
+ (let ((s2 (car rest)) (rest (cdr rest)))
+ (and (or (eq? s2 s1) ; Fast path
+ (%lset2<= = s1 s2)) ; Real test
+ (lp s2 rest)))))))
+ (define (lset= = . lists)
+ (define (flip proc) (lambda (x y) (proc y x)))
+ (check-arg procedure? = lset=)
+ (or (not (pair? lists)) ; 0-ary case
+ (let lp ((s1 (car lists)) (rest (cdr lists)))
+ (or (not (pair? rest))
+ (let ((s2 (car rest))
+ (rest (cdr rest)))
+ (and (or (eq? s1 s2) ; Fast path
+ (and (%lset2<= = s1 s2) ; Real test
+ (%lset2<= (flip =) s2 s1)))
+ (lp s2 rest)))))))
+ (define (lset-adjoin = lis . elts)
+ (check-arg procedure? = lset-adjoin)
+ (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
+ lis elts))
+ (define (lset-union = . lists)
+ (check-arg procedure? = lset-union)
+ (reduce (lambda (lis ans) ; Compute ANS + LIS.
+ (cond ((null? lis) ans) ; Don't copy any lists
+ ((null? ans) lis) ; if we don't have to.
+ ((eq? lis ans) ans)
+ (else
+ (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
+ ans
+ (cons elt ans)))
+ ans lis))))
+ '() lists))
+ (define (lset-union! = . lists)
+ (check-arg procedure? = lset-union!)
+ (reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
+ (cond ((null? lis) ans) ; Don't copy any lists
+ ((null? ans) lis) ; if we don't have to.
+ ((eq? lis ans) ans)
+ (else
+ (pair-fold (lambda (pair ans)
+ (let ((elt (car pair)))
+ (if (any (lambda (x) (= x elt)) ans)
+ ans
+ (begin (set-cdr! pair ans) pair))))
+ ans lis))))
+ '() lists))
+ (define (lset-intersection = lis1 . lists)
+ (check-arg procedure? = lset-intersection)
+ (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
+ (cond ((any null-list? lists) '()) ; Short cut
+ ((null? lists) lis1) ; Short cut
+ (else (filter (lambda (x)
+ (every (lambda (lis) (member x lis =)) lists))
+ lis1)))))
+ (define (lset-intersection! = lis1 . lists)
+ (check-arg procedure? = lset-intersection!)
+ (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
+ (cond ((any null-list? lists) '()) ; Short cut
+ ((null? lists) lis1) ; Short cut
+ (else (filter! (lambda (x)
+ (every (lambda (lis) (member x lis =)) lists))
+ lis1)))))
+ (define (lset-difference = lis1 . lists)
+ (check-arg procedure? = lset-difference)
+ (let ((lists (filter pair? lists))) ; Throw out empty lists.
+ (cond ((null? lists) lis1) ; Short cut
+ ((memq lis1 lists) '()) ; Short cut
+ (else (filter (lambda (x)
+ (every (lambda (lis) (not (member x lis =)))
+ lists))
+ lis1)))))
+ (define (lset-difference! = lis1 . lists)
+ (check-arg procedure? = lset-difference!)
+ (let ((lists (filter pair? lists))) ; Throw out empty lists.
+ (cond ((null? lists) lis1) ; Short cut
+ ((memq lis1 lists) '()) ; Short cut
+ (else (filter! (lambda (x)
+ (every (lambda (lis) (not (member x lis =)))
+ lists))
+ lis1)))))
+ (define (lset-xor = . lists)
+ (check-arg procedure? = lset-xor)
+ (reduce (lambda (b a) ; Compute A xor B:
+ ;; Note that this code relies on the constant-time
+ ;; short-cuts provided by LSET-DIFF+INTERSECTION,
+ ;; LSET-DIFFERENCE & APPEND to provide constant-time short
+ ;; cuts for the cases A = (), B = (), and A eq? B. It takes
+ ;; a careful case analysis to see it, but it's carefully
+ ;; built in.
+ ;; Compute a-b and a^b, then compute b-(a^b) and
+ ;; cons it onto the front of a-b.
+ (receive (a-b a-int-b) (lset-diff+intersection = a b)
+ (cond ((null? a-b) (lset-difference = b a))
+ ((null? a-int-b) (append b a))
+ (else (fold (lambda (xb ans)
+ (if (member xb a-int-b =) ans (cons xb ans)))
+ a-b
+ b)))))
+ '() lists))
+ (define (lset-xor! = . lists)
+ (check-arg procedure? = lset-xor!)
+ (reduce (lambda (b a) ; Compute A xor B:
+ ;; Note that this code relies on the constant-time
+ ;; short-cuts provided by LSET-DIFF+INTERSECTION,
+ ;; LSET-DIFFERENCE & APPEND to provide constant-time short
+ ;; cuts for the cases A = (), B = (), and A eq? B. It takes
+ ;; a careful case analysis to see it, but it's carefully
+ ;; built in.
+ ;; Compute a-b and a^b, then compute b-(a^b) and
+ ;; cons it onto the front of a-b.
+ (receive (a-b a-int-b) (lset-diff+intersection! = a b)
+ (cond ((null? a-b) (lset-difference! = b a))
+ ((null? a-int-b) (append! b a))
+ (else (pair-fold (lambda (b-pair ans)
+ (if (member (car b-pair) a-int-b =) ans
+ (begin (set-cdr! b-pair ans) b-pair)))
+ a-b
+ b)))))
+ '() lists))
+ (define (lset-diff+intersection = lis1 . lists)
+ (check-arg procedure? = lset-diff+intersection)
+ (cond ((every null-list? lists) (values lis1 '())) ; Short cut
+ ((memq lis1 lists) (values '() lis1)) ; Short cut
+ (else (partition (lambda (elt)
+ (not (any (lambda (lis) (member elt lis =))
+ lists)))
+ lis1))))
+ (define (lset-diff+intersection! = lis1 . lists)
+ (check-arg procedure? = lset-diff+intersection!)
+ (cond ((every null-list? lists) (values lis1 '())) ; Short cut
+ ((memq lis1 lists) (values '() lis1)) ; Short cut
+ (else (partition! (lambda (elt)
+ (not (any (lambda (lis) (member elt lis =))
+ lists)))
+ lis1)))))
+ (export
+ xcons tree-copy make-list list-tabulate cons* list-copy
+ proper-list? circular-list? dotted-list? not-pair? null-list? list=
+ circular-list length+
+ iota
+ first second third fourth fifth sixth seventh eighth ninth tenth
+ car+cdr
+ take drop
+ take-right drop-right
+ take! drop-right!
+ split-at split-at!
+ last last-pair
+ zip unzip1 unzip2 unzip3 unzip4 unzip5
+ count
+ append! append-reverse append-reverse! concatenate concatenate!
+ unfold fold pair-fold reduce
+ unfold-right fold-right pair-fold-right reduce-right
+ append-map append-map! map! pair-for-each filter-map map-in-order
+ filter partition remove
+ filter! partition! remove!
+ find find-tail any every list-index
+ take-while drop-while take-while!
+ span break span! break!
+ delete delete!
+ alist-cons alist-copy
+ delete-duplicates delete-duplicates!
+ alist-delete alist-delete!
+ reverse!
+ lset<= lset= lset-adjoin
+ lset-union lset-intersection lset-difference lset-xor lset-diff+intersection
+ lset-union! lset-intersection! lset-difference! lset-xor! lset-diff+intersection!
+ map for-each member assoc))