108 lines
2.4 KiB
Coq
108 lines
2.4 KiB
Coq
|
/* Booth Multiplication
|
||
|
* Written by Peter McGoron, 2022.
|
||
|
*/
|
||
|
|
||
|
module boothmul
|
||
|
#(
|
||
|
parameter A1_LEN = 32,
|
||
|
parameter A2_LEN = 32,
|
||
|
// AZLEN_SIZ = floor(log2(A2_LEN + 2) + 1).
|
||
|
// It must be able to store A2_LEN + 2.
|
||
|
parameter A2LEN_SIZ = 6
|
||
|
)
|
||
|
(
|
||
|
input clk,
|
||
|
input arm,
|
||
|
input [A1_LEN-1:0] a1,
|
||
|
input [A2_LEN-1:0] a2,
|
||
|
output [A1_LEN+A2_LEN-1:0] outn,
|
||
|
output reg fin
|
||
|
);
|
||
|
|
||
|
/***********************
|
||
|
* Booth Parameters
|
||
|
**********************/
|
||
|
|
||
|
localparam OUT_LEN = A1_LEN + A2_LEN;
|
||
|
localparam REG_LEN = OUT_LEN + 2;
|
||
|
|
||
|
/* The Booth multiplication algorithm is a sequential algorithm for
|
||
|
* twos-compliment integers.
|
||
|
*
|
||
|
* Let REG_LEN be equal to 1 + len(a1) + len(a2) + 1.
|
||
|
* Let P, S, and A be of length REG_LEN.
|
||
|
* Let A = a1 << len(a2) + 1, where a1 sign extends to the upper bit.
|
||
|
* Let S = -a1 << len(a2) + 1, where a1 sign extens to the upper bit.
|
||
|
* Let P = a2 << 1.
|
||
|
*
|
||
|
* Repeat the following len(a2) times:
|
||
|
* case(P[1:0])
|
||
|
* 2'b00, 2'b11: P <= P >>> 1;
|
||
|
* 2'b01: P <= (P + A) >>> 1;
|
||
|
* 2'b10: P <= (P + S) >>> 1;
|
||
|
* endcase
|
||
|
* The final value is P[REG_LEN-2:1].
|
||
|
*
|
||
|
* Wires and registers of REG_LEN length are organized like:
|
||
|
*
|
||
|
* /Overflow bit
|
||
|
* [M][ REG_LEN ][0]
|
||
|
* [M][ A1_LEN ][ A2_LEN ][0]
|
||
|
*/
|
||
|
|
||
|
reg signed [REG_LEN-1:0] a;
|
||
|
reg signed [REG_LEN-1:0] s;
|
||
|
reg signed [REG_LEN-1:0] p = 0;
|
||
|
|
||
|
assign outn[OUT_LEN-1:0] = p[REG_LEN-2:1];
|
||
|
|
||
|
/**********************
|
||
|
* Loop Implementation
|
||
|
*********************/
|
||
|
|
||
|
reg[A2LEN_SIZ-1:0] loop_accul = 0;
|
||
|
|
||
|
always @ (posedge clk) begin
|
||
|
if (!arm) begin
|
||
|
loop_accul <= 0;
|
||
|
fin <= 0;
|
||
|
end else if (loop_accul == 0) begin
|
||
|
p[0] <= 0;
|
||
|
p[A2_LEN:1] <= a2;
|
||
|
p[REG_LEN-1:A2_LEN+1] <= 0;
|
||
|
|
||
|
a[A2_LEN:0] <= 0;
|
||
|
a[REG_LEN-2:A2_LEN + 1] <= a1;
|
||
|
a[REG_LEN-1] <= a1[A1_LEN-1]; // Sign extension
|
||
|
|
||
|
s[A2_LEN:0] <= 0;
|
||
|
// Extend before negation to ensure size
|
||
|
s[REG_LEN-1:A2_LEN+1] <= ~{a1[A1_LEN-1],a1} + 1;
|
||
|
|
||
|
loop_accul <= loop_accul + 1;
|
||
|
end else if (loop_accul < A2_LEN + 1) begin
|
||
|
/* The loop counter starts from 1, so it must go to
|
||
|
* A2_LEN + 1 exclusive.
|
||
|
* (i = 0; i < len; i++)
|
||
|
* becomes (i = 1; i < len + 1; i++)
|
||
|
*/
|
||
|
loop_accul <= loop_accul + 1;
|
||
|
case (p[1:0])
|
||
|
2'b00, 2'b11: p <= p >>> 1;
|
||
|
2'b10: p <= (p + s) >>> 1;
|
||
|
2'b01: p <= (p + a) >>> 1;
|
||
|
endcase
|
||
|
end else begin
|
||
|
fin <= 1;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
`ifdef BOOTH_SIM
|
||
|
initial begin
|
||
|
$dumpfile("booth.vcd");
|
||
|
$dumpvars;
|
||
|
end
|
||
|
`endif
|
||
|
|
||
|
endmodule
|