creole/asm/creole.py

349 lines
10 KiB
Python

#!/usr/bin/python3
from enum import Enum
class MalformedArgument(Exception):
pass
def word_2c(w):
""" Negate a non-negative integer using 32 bit two's compliment.
:param w: An integer in two's compliment. A non-negative Python
integer will work.
:return: The negation of the integer stored as a two's compliment
integer.
"""
return (~w + 1) & 0xFFFFFFFF
def ti(w):
""" Explicitly transform integer into two's compliment representation.
:param w: A python integer.
:return: The integer in two's compliment.
"""
return w if w >= 0 else word_wc(-w)
def from_2c(w):
""" Turn two's compliment word into Python integer.
:param w: An integer in 32 bit twos compliment.
:return: The integer as a proper Python string.
"""
if (w >> 31) & 1 == 0:
return w
return -word_2c(w)
class Argument:
""" Class of arguments. Not used directly: It is used to store
intermediate information during the assembly process. """
def __init__(self, argtype, val, sign=False):
""" Initialize an argument.
:param argtype: Type of the argument (instance of ArgType).
:param val: Python integer value of the argument.
:param sign: If the argument should be treated as signed.
Otherwise, the integer will be interpreted in execution
as an unsigned integer.
"""
self.at = argtype
self.sign = sign
self.val = val
def __str__(self):
return f'({self.at}, {self.sign}, {self.val})'
def high_bits(self):
""" Returns the high bits that the argument would have
in the opcode. """
return int(self.sign) << 1 | (self.at == ArgType.REG)
class ArgType(Enum):
""" Class denoting the type of an argument to an instruction. """
IMM = 1
""" Immediate values are ones that must be numbers (positive or negative). """
REG = 2
""" Type of registers. """
VAL = 3
""" Type that denotes either immediate values or registers. """
LAB = 4
""" Type of labels. """
def gettype(s):
""" Parses the type of the argument represented as a string
and returns a tuple with the first the first element being
the type and the second element being the integer value of
the argument.
Valid parameters are:
* `r` followed by a nonnegative integer (register)
* `l` followed by a nonnegative integer (label)
* any integer (immediate value)
:param s: String representing the argument.
:return: The Argument object representing the argument.
:raises MalformedArgument:
"""
if s.isnumeric():
return Argument(ArgType.IMM, int(s))
elif s[0] == "-" and s[1:].isnumeric():
return Argument(ArgType.IMM, word_2c(int(s[1:])), True)
elif s[0] == 'r' and s[1:].isnumeric():
return Argument(ArgType.REG, int(s[1:]))
elif s[0] == 'l' and s[1:].isnumeric():
return Argument(ArgType.LAB, int(s[1:]))
else:
raise MalformedArgument(s)
def typecheck(self, s):
""" Parses the type of the string and returns it if it fits
the type of the enum value.
:param s: String argument representing an argument.
:return: The Argument class containing the object, or None
if the string does not fit the type of self. """
t = ArgType.gettype(s)
if self == ArgType.VAL:
if t.at == ArgType.REG or t.at == ArgType.IMM:
return t
else:
return None
elif t.at == self:
return t
else:
return None
class OpcodeException(Exception):
pass
class TypecheckLenException(Exception):
""" Exception thrown when arguments to an instruction are of the
incorrect length. """
def __init__(self, opcode, insargs, argtypelen):
self.opcode = opcode
self.insargs = insargs
self.argtypelen = argtypelen
def __str__(self):
return f'''\
arguments {self.insargs} to opcode {self.opcode} not of length {self.argtypelen}\
'''
class TypecheckException(Exception):
""" Exception thrown when an argument to an instruction are of the
incorrect type. """
def __init__(self, argtype, sarg, i, opcode):
self.argtype = argtype
self.sarg = sarg
self.i = i
self.opcode = opcode
def __str__(self):
return f'''\
opcode {self.opcode} has invalid value {self.sarg}
(expected {self.argtype} in position {self.i})\
'''
class Instruction(Enum):
""" Class of microcode instructions. The first number is the opcode
and the suceeding values are the types of each of the
arguments. The first argument is the opcode and the second
argument is what function is used to compile the instruction
(some instructions are actually versions of other instructions). """
NOP = 0, "_render_default"
PUSH = 1, "_render_default", ArgType.VAL
POP = 2, "_render_default", ArgType.REG
ADD = 3, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL
MOV = "ADD", "_render_mov", ArgType.REG, ArgType.VAL
MUL = 4, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL
DIV = 5, "_render_default", ArgType.REG, ArgType.VAL, ArgType.VAL
SDIV = "DIV", "_render_change_args", ArgType.REG, ArgType.VAL, ArgType.VAL
SYS = 6, "_render_default", ArgType.VAL
CLB = 7, "_render_default", ArgType.LAB
JL = 8, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL
JLS = "JL", "_render_change_args", ArgType.LAB, ArgType.VAL, ArgType.VAL
JLE = 9, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL
JLES = "JLE", "_render_change_args", ArgType.LAB, ArgType.VAL, ArgType.VAL
JE = 10, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL
J = "JE", "_render_j", ArgType.LAB
JNE = 11, "_render_default", ArgType.LAB, ArgType.VAL, ArgType.VAL
def __int__(self):
""" Returns the opcode associated with the Instruction.
If it is a virtual instruction, it will resolve the string
name of the opcode and return its opcode. """
if type(self.opcode) is int:
return self.opcode
return int(Instruction[self.opcode])
def __init__(self, opcode, renderfun, *args):
""" Initialize an Instruction. Do not call this function: it is
used to make enum values. To add a new instruction, modify
the Instruction enum.
This function sometimes takes string arguments because
certain values may not be loaded until later.
:param opcode: Opcode of the instruction, or a string
containing the case-sensitive name of the instruction from
which this instruction derives from.
:param renderfun: a string with the name of a function
in the class that returns the instruction opcode.
:param *args: Type of each argument to the instruction.
The amount of arguments denotes the amount of instructions.
"""
if type(opcode) is int and (opcode > 0x7F or opcode < 0):
raise OpcodeException(opcode)
self.opcode = opcode
self.argtypes = args
self.render = getattr(self, renderfun)
def typecheck(self, sargs):
""" Pass arguments to the instruction and check if the
arguments are correct.
:param sargs: List of arguments to the instruction
as strings.
:return: List of arguments (as Argument objects).
:raises TypeCheckException:
:raises TypecheckLenException:
"""
rargs = []
if len(sargs) != len(self.argtypes):
raise TypecheckLenException(self.opcode, sargs,
len(self.argtypes))
for i in range(0, len(sargs)):
t = self.argtypes[i].typecheck(sargs[i])
if t is None:
raise TypecheckException(self.argtypes[i],
sargs[i],
i, self.opcode)
rargs.append(t)
return rargs
def _render_mov(self, args):
args = [args[0], args[1], Argument(ArgType.IMM, 0)]
return Instruction[self.opcode].render(args)
def _render_j(self, args):
args = [args[0], Argument(ArgType.IMM, 0),
Argument(ArgType.IMM, 0)]
return Instruction[self.opcode].render(args)
def _render_change_args(self, args):
for i in range(0,len(args)):
if args[i].at != ArgType.LAB:
args[i].sign = True
return Instruction[self.opcode].render(args)
def _render_default(self, args):
b = bytes([self.opcode])
for a in args:
l = 2 if a.val < 0x80 else None
bex = encode_pseudo_utf8(a.val, a.high_bits(), l)
b = b + bex
return b + bytes([0])
encoding_types = {
# start mask B
2: (0x7F, 0xC0, 7),
3: (0xFFF, 0xE0, 12),
4: (0x1FFFF, 0xF0, 17),
5: (0x3FFFFF, 0xF8, 22),
6: (0x7FFFFFF, 0xFC, 27),
7: (0xFFFFFFFF, 0xFE, 32),
# B : Total number of bits excluding high bits
}
class InvalidNumberException(Exception):
pass
class InvalidLengthException(Exception):
pass
def encode_pseudo_utf8(n, high_bits, to):
if n < 0:
raise InvalidNumberException(n)
if to is None or to < 0:
for k in sorted(encoding_types):
if n <= encoding_types[k][0]:
to = k
break
if to is None:
raise InvalidNumberException(n)
if to > 8 or to < 0:
raise InvalidLengthException(to)
elif to == 1:
if n < 0x80:
return bytes([n])
else:
raise InvalidNumberException(n,to)
(maxval, start_byte, n_tot) = encoding_types[to]
if n > maxval or high_bits > 15:
raise InvalidNumberException(n, high_bits)
n = n | (high_bits << n_tot)
all_bytes = []
for i in range(0, to - 1):
all_bytes.append(0x80 | (n & 0x3F))
n >>= 6
all_bytes.append(start_byte | n)
return bytes(reversed(all_bytes))
class RangeCheckException(Exception):
pass
class Line:
def __init__(self, ins, args):
self.ins = ins
self.args = args
def check_line(self, lablen, reglen):
for a in self.args:
if a.at == ArgType.REG:
if a.val < 0 or a.val >= reglen:
raise RangeCheckException(a.at,
a.val,
reglen)
elif a.at == ArgType.LAB:
if a.val < 0 or a.val >= lablen:
raise RangeCheckException(a.at,
a.val,
reglen)
def __call__(self):
return self.ins.render(self.args)
class InstructionNotFoundException(Exception):
pass
class Program:
def asm_push_line(self, ins, args):
l = Line(ins, args)
l.check_line(self.lablen, self.reglen)
self.asm.append(l)
def parse_asm_line(self, line):
line = line.split()
line[0] = line[0].casefold()
try:
# TODO: is there no better way to do this in Python?
ins = Instruction[line[0].upper()]
except Exception as e:
raise InstructionNotFoundException(line[0])
args_w_type = ins.typecheck(line[1:])
self.asm_push_line(ins, args_w_type)
def parse_lines(self, lines):
for l in lines:
self.parse_asm_line(l)
def __call__(self):
b = bytes()
for line in self.asm:
b = b + line()
return b
def __init__(self, lablen=16, reglen=16):
self.asm = []
self.lablen = lablen
self.reglen = reglen