gb/gb.hpp

2992 lines
66 KiB
C++
Raw Normal View History

2015-09-27 15:43:22 -04:00
// gb.hpp - v0.02 - public domain C++11 helper library - no warranty implied; use at your own risk
2015-09-27 14:03:47 -04:00
// (Experimental) A C++11 helper library without STL geared towards game development
//
// Version History:
2015-09-27 15:43:22 -04:00
// 0.02 - Hash Table
2015-09-27 14:03:47 -04:00
// 0.01 - Initial Version
//
// LICENSE
//
// This software is in the public domain. Where that dedication is not
// recognized, you are granted a perpetual, irrevocable license to copy,
// distribute, and modify this file as you see fit.
//
// WARNING
//
// This library is highly experimental and features may not work as expected.
// This also means that many functions are not documented.
//
2015-09-28 15:31:26 -04:00
// CONTENT
//
// - Common Macros
// - Assert
// - Types
// - C++11 Move Semantics
// - Defer
// - Memory
// - Functions
// - Allocator
// - Heap_Allocator
// - Arena_Allocator
// - Temporary_Arena_Memory
// - Array
// - Hash_Table
// - Math Types
// - Vector(2,3,4)
// - Quaternion
// - Matrix4
// - Math Operations
// - Math Functions & Constants
// - Math Type Functions
//
//
//
2015-09-27 14:03:47 -04:00
#ifndef GB_INCLUDE_GB_HPP
#define GB_INCLUDE_GB_HPP
#if !defined(__cplusplus) && __cplusplus >= 201103L
#error This library is only for C++11 and above
#endif
// NOTE(bill): Because static means three different things in C/C++
// Great Design(!)
#define global static
#define internal static
#define local_persist static
#if defined(_MSC_VER)
#define _ALLOW_KEYWORD_MACROS
#if !defined(alignof) // Needed for MSVC 2013
#define alignof(x) __alignof(x)
#endif
#endif
////////////////////////////////
/// System OS ///
////////////////////////////////
#if defined(_WIN32) || defined(_WIN64)
#define GB_SYSTEM_WINDOWS
#define NOMINMAX
2015-09-28 15:31:26 -04:00
#define VC_EXTRALEAN
#define WIN32_EXTRA_LEAN
2015-09-27 14:03:47 -04:00
#elif defined(__APPLE__) && defined(__MACH__)
#define GB_SYSTEM_OSX
#elif defined(__unix__)
#define GB_SYSTEM_UNIX
#if defined(__linux__)
#define GB_SYSTEM_LINUX
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#define GB_SYSTEM_FREEBSD
#else
#error This UNIX operating system is not supported by gb.hpp
#endif
#else
#error This operating system is not supported by gb.hpp
#endif
////////////////////////////////
/// Environment Bit Size ///
////////////////////////////////
#if defined(_WIN32) || defined(_WIN64)
#if defined(_WIN64)
#define GB_ARCH_64_BIT
#else
#define GB_ARCH_32_BIT
#endif
#endif
// TODO(bill): Check if this KEPLER_ENVIRONMENT works on clang
#if defined(__GNUC__)
#if defined(__x86_64__) || defined(__ppc64__)
#define GB_ARCH_64_BIT
#else
#define GB_ARCH_32_BIT
#endif
#endif
#define GB_IS_POWER_OF_TWO(x) ((x) != 0) && !((x) & ((x) - 1))
#ifndef NDEBUG
#define GB_ASSERT(x, ...) ((void)(gb__assert_handler((x), #x, __FILE__, __LINE__, ##__VA_ARGS__)))
#else
#define GB_ASSERT(x, ...) ((void)sizeof(x))
#endif
extern "C" void
gb__assert_handler(bool condition, const char* condition_str,
const char* filename, size_t line,
const char* error_text = nullptr, ...);
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef GB_SYSTEM_WINDOWS
#include <windows.h>
#else
#include <pthread.h>
#endif
namespace gb
{
////////////////////////////////
/// Types ///
////////////////////////////////
using u8 = uint8_t;
using s8 = int8_t;
using u16 = uint16_t;
using s16 = int16_t;
using u32 = uint32_t;
using s32 = int32_t;
#if defined(_MSC_VER)
using s64 = signed __int64;
using u64 = unsigned __int64;
#else
using s64 = int64_t;
using u64 = uint64_t;
#endif
using f32 = float;
using f64 = double;
#ifdef GB_B8_AS_BOOL
using b8 = bool;
#else
using b8 = s8;
#endif
using b32 = s32;
// NOTE(bill): (std::)size_t is not used not because it's a bad concept but on
// the platforms that I will be using:
2015-09-27 15:43:22 -04:00
// sizeof(size_t) == sizeof(usize) == sizeof(s64)
2015-09-27 14:03:47 -04:00
// NOTE(bill): This also allows for a signed version of size_t which is similar
// to ptrdiff_t
// NOTE(bill): If (u)intptr is a better fit, please use that.
// NOTE(bill): Also, I hate the `_t` suffix
#if defined(GB_ARCH_64_BIT)
using ssize = s64;
using usize = u64;
#elif defined(GB_ARCH_32_BIT)
2015-09-27 15:43:22 -04:00
using usize = s32;
2015-09-27 14:03:47 -04:00
using usize = u32;
#else
#error Unknown architecture bit size
#endif
static_assert(sizeof(usize) == sizeof(size_t),
"`usize` is not the same size as `size_t`");
static_assert(sizeof(ssize) == sizeof(usize),
"`ssize` is not the same size as `usize`");
using intptr = intptr_t;
using uintptr = uintptr_t;
using ptrdiff = ptrdiff_t;
////////////////////////////////
/// C++11 Move Semantics ///
////////////////////////////////
template <typename T> struct Remove_Reference { using Type = T; };
template <typename T> struct Remove_Reference<T&> { using Type = T; };
template <typename T> struct Remove_Reference<T&&> { using Type = T; };
template <typename T>
inline T&&
forward(typename Remove_Reference<T>::Type& t)
{
2015-09-28 15:31:26 -04:00
return static_cast<T&&>(t);
2015-09-27 14:03:47 -04:00
}
template <typename T>
inline T&&
forward(typename Remove_Reference<T>::Type&& t)
{
2015-09-28 15:31:26 -04:00
return static_cast<T&&>(t);
2015-09-27 14:03:47 -04:00
}
template <typename T>
inline typename Remove_Reference<T>::Type&&
move(T&& t)
{
return static_cast<typename Remove_Reference<T>::Type&&>(t);
}
////////////////////////////////
/// Defer ///
////////////////////////////////
namespace impl
{
template <typename Fn>
struct Defer
{
Fn fn;
Defer(Fn&& fn) : fn{forward<Fn>(fn)} {}
~Defer() { fn(); };
};
template <typename Fn>
Defer<Fn>
defer_fn(Fn&& fn) { return Defer<Fn>(forward<Fn>(fn)); }
} // namespace impl
} // namespace gb
2015-09-28 15:31:26 -04:00
// NOTE(bill): These macros are in the global namespace thus, defer can be treated without a gb:: prefix
2015-09-27 14:03:47 -04:00
#define GB_DEFER_1(x, y) x##y
#define GB_DEFER_2(x, y) GB_DEFER_1(x, y)
#define GB_DEFER_3(x) GB_DEFER_2(GB_DEFER_2(x, __COUNTER__), __LINE__)
#define defer(code) auto GB_DEFER_3(_defer_) = gb::impl::defer_fn([&](){code;})
namespace gb
{
////////////////////////////////
/// Memory ///
////////////////////////////////
struct Mutex
{
#ifdef GB_SYSTEM_WINDOWS
HANDLE win32_mutex;
#else
pthread_mutex_t posix_mutex;
#endif
Mutex();
~Mutex();
};
void lock_mutex(Mutex& mutex);
bool try_lock_mutex(Mutex& mutex);
void unlock_mutex(Mutex& mutex);
2015-09-28 15:31:26 -04:00
#ifndef GB_DEFAULT_ALIGNMENT
2015-09-27 14:03:47 -04:00
#define GB_DEFAULT_ALIGNMENT 4
2015-09-28 15:31:26 -04:00
#endif
2015-09-27 14:03:47 -04:00
inline void*
align_forward(void* ptr, usize align)
{
GB_ASSERT(GB_IS_POWER_OF_TWO(align));
uintptr p = (uintptr)ptr;
const usize modulo = p % align;
if (modulo)
p += (uintptr)(align - modulo);
return (void*)p;
}
struct Allocator
{
Allocator() {}
virtual ~Allocator() {}
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT) = 0;
virtual void dealloc(void* ptr) = 0;
2015-09-27 15:43:22 -04:00
virtual s64 allocated_size(const void* ptr) = 0;
virtual s64 total_allocated() = 0;
2015-09-27 14:03:47 -04:00
private:
// Delete copying
Allocator(const Allocator&) = delete;
Allocator& operator=(const Allocator&) = delete;
};
inline void*
alloc(Allocator& a, usize size, usize align = GB_DEFAULT_ALIGNMENT)
{
return a.alloc(size, align);
}
inline void
dealloc(Allocator& a, void* ptr)
{
return a.dealloc(ptr);
}
template <typename T>
inline T*
alloc_struct(Allocator& a)
{
return static_cast<T*>a.alloc(sizeof(T), alignof(T));
}
template <typename T>
inline T*
alloc_array(Allocator& a, usize count)
{
return static_cast<T*>(alloc(a, count * sizeof(T), alignof(T)));
}
#define GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE (usize)(-1)
struct Heap_Allocator : Allocator
{
struct Header
{
2015-09-27 15:43:22 -04:00
s64 size;
2015-09-27 14:03:47 -04:00
};
2015-09-27 15:43:22 -04:00
Mutex mutex = Mutex{};
s64 total_allocated_count = 0;
s64 allocation_count = 0;
2015-09-27 14:03:47 -04:00
Heap_Allocator() = default;
virtual ~Heap_Allocator();
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
virtual void dealloc(void* ptr);
2015-09-27 15:43:22 -04:00
virtual s64 allocated_size(const void* ptr);
virtual s64 total_allocated();
Header* get_header_ptr(const void* ptr);
2015-09-27 14:03:47 -04:00
};
struct Arena_Allocator : Allocator
{
2015-09-27 15:43:22 -04:00
s64 base_size = 0;
u8* base = nullptr;
s64 total_allocated_count = 0;
s64 temp_count = 0;
2015-09-27 14:03:47 -04:00
virtual void* alloc(usize size, usize align = GB_DEFAULT_ALIGNMENT);
virtual void dealloc(void* ptr);
2015-09-27 15:43:22 -04:00
virtual s64 allocated_size(const void* ptr);
virtual s64 total_allocated();
2015-09-27 14:03:47 -04:00
virtual usize get_alignment_offset(usize align = GB_DEFAULT_ALIGNMENT);
virtual usize get_remaining_space(usize align = GB_DEFAULT_ALIGNMENT);
void check();
};
inline void
init_arena_allocator(Arena_Allocator& arena, void* base, usize base_size)
{
arena.base_size = base_size;
arena.base = (u8*)base;
arena.temp_count = 0;
arena.total_allocated_count = 0;
}
struct Temporary_Arena_Memory
{
Arena_Allocator* arena;
2015-09-27 15:43:22 -04:00
s64 original_count;
2015-09-27 14:03:47 -04:00
explicit Temporary_Arena_Memory(Arena_Allocator& arena_)
: arena(&arena_)
, original_count(arena_.total_allocated_count)
{
}
~Temporary_Arena_Memory()
{
GB_ASSERT(arena->total_allocated() >= original_count);
arena->total_allocated_count = original_count;
GB_ASSERT(arena->temp_count > 0);
arena->temp_count--;
}
};
inline Temporary_Arena_Memory
make_temporary_arena_memory(Arena_Allocator& arena)
{
return Temporary_Arena_Memory{arena};
}
////////////////////////////////
/// Array ///
////////////////////////////////
template <typename T>
struct Array
{
Allocator* allocator;
2015-09-27 15:43:22 -04:00
s64 count;
s64 allocation;
T* data;
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
Array() = default;
explicit Array(Allocator& a, usize count = 0);
2015-09-27 14:03:47 -04:00
virtual ~Array() { if (allocator) dealloc(*allocator, data); }
const T& operator[](usize index) const { return data[index]; }
T& operator[](usize index) { return data[index]; }
};
template <typename T> Array<T> make_array(Allocator& allocator, usize count = 0);
template <typename T> void free_array(Array<T>& array);
template <typename T> void append_array(Array<T>& a, const T& item);
template <typename T> void append_array(Array<T>& a, const T* items, usize count);
template <typename T> void pop_back_array(Array<T>& a);
template <typename T> inline T* begin(Array<T>& a) { return a.data; }
template <typename T> inline const T* begin(const Array<T>& a) { return a.data; }
template <typename T> inline T* end(Array<T>& a) { return a.data + a.count; }
template <typename T> inline const T* end(const Array<T>& a) { return a.data + a.count; }
template <typename T> void clear_array(Array<T>& a);
template <typename T> void resize_array(Array<T>& a, usize count);
template <typename T> void reserve_array(Array<T>& a, usize allocation);
template <typename T> void set_array_allocation(Array<T>& a, usize allocation);
template <typename T> void grow_array(Array<T>& a, usize min_allocation = 0);
2015-09-27 15:43:22 -04:00
////////////////////////////////
/// Hash Table ///
////////////////////////////////
2015-09-27 14:03:47 -04:00
template <typename T>
2015-09-27 15:43:22 -04:00
struct Hash_Table
2015-09-27 14:03:47 -04:00
{
2015-09-27 15:43:22 -04:00
struct Entry
2015-09-27 14:03:47 -04:00
{
2015-09-27 15:43:22 -04:00
u64 key;
s64 next;
T value;
};
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
Array<s64> hashes;
Array<Entry> data;
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
Hash_Table() = default;
explicit Hash_Table(Allocator& a);
~Hash_Table() = default;
};
2015-09-27 14:03:47 -04:00
template <typename T>
2015-09-27 15:43:22 -04:00
Hash_Table<T>::Hash_Table(Allocator& a)
2015-09-27 14:03:47 -04:00
{
2015-09-27 15:43:22 -04:00
hashes = make_array<s64>(a);
data = make_array<typename Hash_Table<T>::Entry>(a);
2015-09-27 14:03:47 -04:00
}
template <typename T>
2015-09-27 15:43:22 -04:00
inline Hash_Table<T>
make_hash_table(Allocator& a)
2015-09-27 14:03:47 -04:00
{
2015-09-27 15:43:22 -04:00
Hash_Table<T> h = {};
h.hashes = make_array<s64>(a);
h.data = make_array<typename Hash_Table<T>::Entry>(a);
return h;
2015-09-27 14:03:47 -04:00
}
2015-09-27 15:43:22 -04:00
template <typename T> bool hash_table_has(const Hash_Table<T>& h, u64 key);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
template <typename T> const T& hash_table_get(const Hash_Table<T>& h, u64 key, const T& default_value);
template <typename T> void hash_table_set(Hash_Table<T>& h, u64 key, const T& value);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
template <typename T> void remove_from_hash_table(Hash_Table<T>& h, u64 key);
template <typename T> void reserve_hash_table(Hash_Table<T>& h, usize capacity);
template <typename T> void clear_hash_table(Hash_Table<T>& h);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
// Iterators (in random order)
template <typename T> const typename Hash_Table<T>::Entry* begin(const Hash_Table<T>& h);
template <typename T> const typename Hash_Table<T>::Entry* end(const Hash_Table<T>& h);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
// Mutli_Hash_Table
template <typename T> void get_multiple_from_hash_table(const Hash_Table<T>& h, u64 key, Array<T>& items);
template <typename T> usize multiple_count_from_hash_table(const Hash_Table<T>& h, u64 key);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
template <typename T> const typename Hash_Table<T>::Entry* find_first_in_hash_table(const Hash_Table<T>& h, u64 key);
template <typename T> const typename Hash_Table<T>::Entry* find_next_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
template <typename T> void insert_into_hash_table(Hash_Table<T>& h, u64 key, const T& value);
template <typename T> void remove_entry_from_hash_table(Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e);
template <typename T> void remove_all_from_hash_table(Hash_Table<T>& h, u64 key);
2015-09-27 14:03:47 -04:00
////////////////////////////////
2015-09-28 15:31:26 -04:00
/// Array ///
2015-09-27 14:03:47 -04:00
////////////////////////////////
2015-09-28 15:31:26 -04:00
template <typename T>
inline Array<T>::Array(Allocator& a, usize count_)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
allocator = &a;
count = 0;
allocation = 0;
data = nullptr;
if (count > 0)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
data = alloc_array<T>(a, count_);
if (data)
count = allocation = count_;
}
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline Array<T>
make_array(Allocator& allocator, usize count)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
Array<T> array = {};
array.allocator = &allocator;
array.count = 0;
array.allocation = 0;
array.data = nullptr;
if (count > 0)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
array.data = alloc_array<T>(allocator, count);
if (array.data)
array.count = array.allocation = count;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return array;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
dealloc_array(Array<T>& array)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
if (array.allocator)
dealloc(*array.allocator, array.data);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
append_array(Array<T>& a, const T& item)
{
if (a.allocation < a.count + 1)
grow_array(a);
a.data[a.count++] = item;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
append_array(Array<T>& a, const T* items, usize count)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
if (a.allocation <= a.count + count)
grow_array(a, a.count + count);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
memcpy(&a.data[a.count], items, count * sizeof(T));
a.count += count;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
pop_back_array(Array<T>& a)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
GB_ASSERT(a.count > 0);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
a.count--;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
clear_array(Array<T>& a)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
resize_array(a, 0);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
resize_array(Array<T>& a, usize count)
{
if (a.allocation < (s64)count)
grow_array(a, count);
a.count = count;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
reserve_array(Array<T>& a, usize allocation)
{
if (a.allocation < (s64)allocation)
set_array_allocation(a, allocation);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
set_array_allocation(Array<T>& a, usize allocation)
{
if ((s64)allocation == a.allocation)
return;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if ((s64)allocation < a.count)
resize_array(a, allocation);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
T* data = nullptr;
if (allocation > 0)
{
data = alloc_array<T>(*a.allocator, allocation);
memcpy(data, a.data, a.count * sizeof(T));
}
dealloc(*a.allocator, a.data);
a.data = data;
a.allocation = allocation;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
grow_array(Array<T>& a, usize min_allocation)
{
usize allocation = 2 * a.allocation + 2;
if (allocation < min_allocation)
allocation = min_allocation;
set_array_allocation(a, allocation);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
////////////////////////////////
/// Hash Table ///
////////////////////////////////
namespace impl
{
struct Find_Result
{
s64 hash_index;
s64 data_prev;
s64 data_index;
};
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
usize
add_hash_table_entry(Hash_Table<T>& h, u64 key)
{
typename Hash_Table<T>::Entry e;
e.key = key;
e.next = -1;
usize e_index = h.data.count;
append_array(h.data, e);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return e_index;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
void
erase_from_hash_table(Hash_Table<T>& h, const Find_Result& fr)
{
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = h.data[fr.data_index].next;
else
h.data[fr.data_prev].next = g.data[fr.data_index].next;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
pop_back_array(h.data); // updated array count
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (fr.data_index == h.data.count)
return;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
h.data[fr.data_index] = h.data[h.data.count];
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
auto last = find_result_in_hash_table(h, h.data[fr.data_index].key);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (last.data_prev < 0)
h.hashes[last.hash_index] = fr.data_index;
else
h.data[last.data_index].next = fr.data_index;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
Find_Result
find_result_in_hash_table(const Hash_Table<T>& h, u64 key)
{
Find_Result fr;
fr.hash_index = -1;
fr.data_prev = -1;
fr.data_index = -1;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (h.hashes.count == 0)
return fr;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
fr.hash_index = key % h.hashes.count;
fr.data_index = h.hashes[fr.hash_index];
while (fr.data_index >= 0)
{
if (h.data[fr.data_index].key == key)
return fr;
fr.data_prev = fr.data_index;
fr.data_index = h.data[fr.data_index].next;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return fr;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
Find_Result
find_result_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
Find_Result fr;
fr.hash_index = -1;
fr.data_prev = -1;
fr.data_index = -1;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (h.hashes.count == 0 || !e)
return fr;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
fr.hash_index = key % h.hashes.count;
fr.data_index = h.hashes[fr.hash_index];
while (fr.data_index >= 0)
{
if (&h.data[fr.data_index] == e)
return fr;
fr.data_prev = fr.data_index;
fr.data_index = h.data[fr.data_index].next;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return fr;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
s64 make_entry_in_hash_table(Hash_Table<T>& h, u64 key)
{
const Find_Result fr = impl::find_result_in_hash_table(h, key);
const s64 index = impl::add_hash_table_entry(h, key);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = index;
else
h.data[fr.data_prev].next = index;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
h.data[index].next = fr.data_index;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return index;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
void
find_and_erase_entry_from_hash_table(Hash_Table<T>& h, u64 key)
{
const Find_Result fr = impl::find_result_in_hash_table(h, key);
if (fr.data_index >= 0)
erase_from_hash_table(h, fr);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
s64
find_entry_or_fail_in_hash_table(const Hash_Table<T>& h, u64 key)
{
return find_result_in_hash_table(h, key).data_index;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
s64
find_or_make_entry_in_hash_table(Hash_Table<T>& h, u64 key)
{
const auto fr = find_result_in_hash_table(h, key);
if (fr.data_index >= 0)
return fr.data_index;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
s64 index = add_hash_table_entry(h, key);
if (fr.data_prev < 0)
h.hashes[fr.hash_index] = index;
else
h.data[fr.data_prev].next = index;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return index;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
void
rehash_hash_table(Hash_Table<T>& h, usize new_capacity)
2015-09-27 14:03:47 -04:00
{
2015-09-28 15:31:26 -04:00
auto nh = make_hash_table<T>(*h.hashes.allocator);
resize_array(nh.hashes, new_capacity);
const usize old_count = h.data.count;
reserve_array(nh.data, old_count);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
for (usize i = 0; i < new_capacity; i++)
nh.hashes[i] = -1;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
for (usize i = 0; i < old_count; i++)
{
auto& e = h.data[i];
insert_into_hash_table(nh, e.key, e.value);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
auto empty = make_hash_table<T>(*h.hashes.allocator);
h.~Hash_Table<T>();
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
memcpy(&h, &nh, sizeof(Hash_Table<T>));
memcpy(&nh, &empty, sizeof(Hash_Table<T>));
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
void
grow_hash_table(Hash_Table<T>& h)
{
const usize new_capacity = 2 * h.data.count + 2;
rehash_hash_table(h, new_capacity);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
bool
is_hash_table_full(Hash_Table<T>& h)
{
// Make sure that there is enough space
const f32 maximum_load_coefficient = 0.75f;
return h.data.count >= maximum_load_coefficient * h.hashes.count;
}
} // namespace impl
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline bool
hash_table_has(const Hash_Table<T>& h, u64 key)
{
return imple::find_entry_or_fail_in_hash_table(h, key) >= 0;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline const T&
hash_table_get(const Hash_Table<T>& h, u64 key, const T& default_value)
{
const s64 index = impl::find_entry_or_fail_in_hash_table(h, key);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (index < 0)
return default_value;
return h.data[index].value;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
hash_table_set(Hash_Table<T>& h, u64 key, const T& value)
{
if (h.hashes.count == 0)
impl::grow_hash_table(h);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
const s64 index = impl::find_or_make_entry_in_hash_table(h, key);
h.data[index].value = value;
if (impl::is_hash_table_full(h))
impl::grow_hash_table(h);
}
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
remove_from_hash_table(Hash_Table<T>& h, u64 key)
{
impl::find_and_erase_entry_from_hash_table(h, key);
}
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
reserve_hash_table(Hash_Table<T>& h, usize capacity)
{
impl:;rehash_hash_table(h, capacity);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
clear_hash_table(Hash_Table<T>& h)
{
clear_array(h.hashes);
clear_array(h.data);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline const typename Hash_Table<T>::Entry*
begin(const Hash_Table<T>& h)
{
return begin(h.data);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline const typename Hash_Table<T>::Entry*
end(const Hash_Table<T>& h)
{
return end(h.data);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
// Mutli_Hash_Table
template <typename T>
inline void
get_multiple_from_hash_table(const Hash_Table<T>& h, u64 key, Array<T>& items)
{
auto e = find_first_in_hash_table(h, key);
while (e)
{
append_array(items, e->value);
e = find_next_in_hash_table(h, e);
}
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline usize
multiple_count_from_hash_table(const Hash_Table<T>& h, u64 key)
{
usize count = 0;
auto e = find_first_in_hash_table(h, key);
while (e)
{
count++
e + find_next_in_hash_table(h, e);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return count;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline const typename Hash_Table<T>::Entry*
find_first_in_hash_table(const Hash_Table<T>& h, u64 key)
{
const s64 index = impl::find_first_in_hash_table(h, key);
if (index < 0)
return nullptr;
return &h.data[index];
}
template <typename T>
const typename Hash_Table<T>::Entry*
find_next_in_hash_table(const Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
if (!e)
return nullptr;
auto index = e->next;
while (index >= 0)
{
if (h.data[index].ley == e->key)
return &h.data[index];
index = h.data[index].next;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
return nullptr;
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
insert_into_hash_table(Hash_Table<T>& h, u64 key, const T& value)
{
if (h.hashes.count == 0)
impl::grow_hash_table(h);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
auto next = impl::make_entry_in_hash_table(h, key);
h.data[next].value = value;
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
if (impl::is_hash_table_full(h))
impl::grow_hash_table(h);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
remove_entry_from_hash_table(Hash_Table<T>& h, const typename Hash_Table<T>::Entry* e)
{
const auto fr = impl:;find_result_in_hash_table(h, e);
if (fr.data_index >= 0)
impl::erase_from_hash_table(h, fr);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
template <typename T>
inline void
remove_all_from_hash_table(Hash_Table<T>& h, u64 key)
{
while (hash_table_has(h, key))
remove(h, key);
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
////////////////////////////////
/// Time ///
////////////////////////////////
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
struct Time
{
s64 microseconds;
};
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time time_now();
void time_sleep(Time time);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time seconds(f32 s);
Time milliseconds(s32 ms);
Time microseconds(s64 us);
f32 time_as_seconds(Time t);
s32 time_as_milliseconds(Time t);
s64 time_as_microseconds(Time t);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
bool operator==(Time left, Time right);
bool operator!=(Time left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
bool operator<(Time left, Time right);
bool operator>(Time left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
bool operator<=(Time left, Time right);
bool operator>=(Time left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time operator-(Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time operator+(Time left, Time right);
Time operator-(Time left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time& operator+=(Time& left, Time right);
Time& operator-=(Time& left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time operator*(Time left, f32 right);
Time operator*(Time left, s64 right);
Time operator*(f32 left, Time right);
Time operator*(s64 left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time& operator*=(Time& left, f32 right);
Time& operator*=(Time& left, s64 right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time operator/(Time left, f32 right);
Time operator/(Time left, s64 right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time& operator/=(Time& left, f32 right);
Time& operator/=(Time& left, s64 right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
f32 operator/(Time left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time operator%(Time left, Time right);
Time& operator%=(Time& left, Time right);
2015-09-27 14:03:47 -04:00
2015-09-27 15:43:22 -04:00
////////////////////////////////
2015-09-28 15:31:26 -04:00
/// Math Types ///
2015-09-27 15:43:22 -04:00
////////////////////////////////
2015-09-28 15:31:26 -04:00
struct Vector2
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
union
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
struct { f32 x, y; };
f32 data[2];
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
struct Vector3
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
union
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
struct { f32 x, y, z; };
Vector2 xy;
f32 data[3];
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
struct Vector4
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
union
{
struct { f32 x, y, z, w; };
struct { Vector2 xy, zw; };
Vector3 xyz;
f32 data[4];
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
inline const f32& operator[](usize index) const { return data[index]; }
inline f32& operator[](usize index) { return data[index]; }
};
struct Quaternion
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
union
{
struct { f32 x, y, z, w; };
Vector3 xyz;
f32 data[4];
};
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
struct Matrix4
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
union
{
struct { Vector4 x, y, z, w; };
Vector4 column[4];
f32 data[16];
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
inline const Vector4& operator[](usize index) const { return column[index]; }
inline Vector4& operator[](usize index) { return column[index]; }
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
struct Euler_Angles
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
// NOTE(bill): All angles in radians
f32 pitch;
f32 yaw;
f32 roll;
};
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
////////////////////////////////
/// Math Type Op Overloads ///
////////////////////////////////
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector2 Operators
bool operator==(const Vector2& a, const Vector2& b);
bool operator!=(const Vector2& a, const Vector2& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 operator-(const Vector2& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 operator+(const Vector2& a, const Vector2& b);
Vector2 operator-(const Vector2& a, const Vector2& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 operator*(const Vector2& a, f32 scalar);
Vector2 operator*(f32 scalar, const Vector2& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 operator/(const Vector2& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 operator*(const Vector2& a, const Vector2& b); // Hadamard Product
Vector2 operator/(const Vector2& a, const Vector2& b); // Hadamard Product
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2& operator+=(Vector2& a, const Vector2& b);
Vector2& operator-=(Vector2& a, const Vector2& b);
Vector2& operator*=(Vector2& a, f32 scalar);
Vector2& operator/=(Vector2& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector3 Operators
bool operator==(const Vector3& a, const Vector3& b);
bool operator!=(const Vector3& a, const Vector3& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator-(const Vector3& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator+(const Vector3& a, const Vector3& b);
Vector3 operator-(const Vector3& a, const Vector3& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator*(const Vector3& a, f32 scalar);
Vector3 operator*(f32 scalar, const Vector3& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator/(const Vector3& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator*(const Vector3& a, const Vector3& b); // Hadamard Product
Vector3 operator/(const Vector3& a, const Vector3& b); // Hadamard Product
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3& operator+=(Vector3& a, const Vector3& b);
Vector3& operator-=(Vector3& a, const Vector3& b);
Vector3& operator*=(Vector3& a, f32 scalar);
Vector3& operator/=(Vector3& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector4 Operators
bool operator==(const Vector4& a, const Vector4& b);
bool operator!=(const Vector4& a, const Vector4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 operator-(const Vector4& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 operator+(const Vector4& a, const Vector4& b);
Vector4 operator-(const Vector4& a, const Vector4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 operator*(const Vector4& a, f32 scalar);
Vector4 operator*(f32 scalar, const Vector4& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 operator/(const Vector4& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 operator*(const Vector4& a, const Vector4& b); // Hadamard Product
Vector4 operator/(const Vector4& a, const Vector4& b); // Hadamard Product
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4& operator+=(Vector4& a, const Vector4& b);
Vector4& operator-=(Vector4& a, const Vector4& b);
Vector4& operator*=(Vector4& a, f32 scalar);
Vector4& operator/=(Vector4& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Quaternion Operators
bool operator==(const Quaternion& a, const Quaternion& b);
bool operator!=(const Quaternion& a, const Quaternion& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion operator-(const Quaternion& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion operator+(const Quaternion& a, const Quaternion& b);
Quaternion operator-(const Quaternion& a, const Quaternion& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion operator*(const Quaternion& a, const Quaternion& b);
Quaternion operator*(const Quaternion& a, f32 s);
Quaternion operator*(f32 s, const Quaternion& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion operator/(const Quaternion& a, f32 s);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Matrix4 Operators
bool operator==(const Matrix4& a, const Matrix4& b);
bool operator!=(const Matrix4& a, const Matrix4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 operator+(const Matrix4& a, const Matrix4& b);
Matrix4 operator-(const Matrix4& a, const Matrix4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 operator*(const Matrix4& a, const Matrix4& b);
Vector4 operator*(const Matrix4& a, const Vector4& v);
Matrix4 operator*(const Matrix4& a, f32 scalar);
Matrix4 operator*(f32 scalar, const Matrix4& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 operator/(const Matrix4& a, f32 scalar);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4& operator+=(Matrix4& a, const Matrix4& b);
Matrix4& operator-=(Matrix4& a, const Matrix4& b);
Matrix4& operator*=(Matrix4& a, const Matrix4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
//////////////////////////////////
/// Math Functions & Constants ///
//////////////////////////////////
extern const Vector2 VECTOR2_ZERO;
extern const Vector3 VECTOR3_ZERO;
extern const Vector4 VECTOR4_ZERO;
extern const Quaternion QUATERNION_IDENTITY;
extern const Matrix4 MATRIX4_IDENTITY;
namespace math
{
extern const f32 EPSILON;
extern const f32 ZERO;
extern const f32 ONE;
extern const f32 THIRD;
extern const f32 TWO_THIRDS;
extern const f32 E;
extern const f32 PI;
extern const f32 TAU;
extern const f32 SQRT_2;
extern const f32 SQRT_3;
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Power
f32 sqrt(f32 x);
f32 pow(f32 x, f32 y);
f32 cbrt(f32 x);
f32 fast_inv_sqrt(f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Trigonometric
f32 sin(f32 radians);
f32 cos(f32 radians);
f32 tan(f32 radians);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 asin(f32 x);
f32 acos(f32 x);
f32 atan(f32 x);
f32 atan2(f32 y, f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 radians(f32 degrees);
f32 degrees(f32 radians);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Hyperbolic
f32 sinh(f32 x);
f32 cosh(f32 x);
f32 tanh(f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 asinh(f32 x);
f32 acosh(f32 x);
f32 atanh(f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Rounding
f32 ceil(f32 x);
f32 floor(f32 x);
f32 mod(f32 x, f32 y);
f32 truncate(f32 x);
f32 round(f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
s32 sign(s32 x);
s64 sign(s64 x);
f32 sign(f32 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Other
f32 abs(f32 x);
s8 abs( s8 x);
s16 abs(s16 x);
s32 abs(s32 x);
s64 abs(s64 x);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
s32 min(s32 a, s32 b);
s64 min(s64 a, s64 b);
f32 min(f32 a, f32 b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
s32 max(s32 a, s32 b);
s64 max(s64 a, s64 b);
f32 max(f32 a, f32 b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
s32 clamp(s32 x, s32 min, s32 max);
s64 clamp(s64 x, s64 min, s64 max);
f32 clamp(f32 x, f32 min, f32 max);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector2 functions
f32 dot(const Vector2& a, const Vector2& b);
f32 cross(const Vector2& a, const Vector2& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 magnitude(const Vector2& a);
Vector2 normalize(const Vector2& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector2 hadamard_product(const Vector2& a, const Vector2& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector3 functions
f32 dot(const Vector3& a, const Vector3& b);
Vector3 cross(const Vector3& a, const Vector3& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 magnitude(const Vector3& a);
Vector3 normalize(const Vector3& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 hadamard_product(const Vector3& a, const Vector3& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Vector4 functions
f32 dot(const Vector4& a, const Vector4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 magnitude(const Vector4& a);
Vector4 normalize(const Vector4& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector4 hadamard_product(const Vector4& a, const Vector4& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Quaternion functions
f32 dot(const Quaternion& a, const Quaternion& b);
Quaternion cross(const Quaternion& a, const Quaternion& b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 magnitude(const Quaternion& a);
Quaternion normalize(const Quaternion& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion conjugate(const Quaternion& a);
Quaternion inverse(const Quaternion& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Vector3 operator*(const Quaternion& a, const Vector3& v); // Rotate v by a
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 quaternion_angle(const Quaternion& a);
Vector3 quaternion_axis(const Quaternion& a);
Quaternion axis_angle(const Vector3& axis, f32 radians);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
f32 quaternion_roll(const Quaternion& a);
f32 quaternion_pitch(const Quaternion& a);
f32 quaternion_yaw(const Quaternion& a);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Euler_Angles quaternion_to_euler_angles(const Quaternion& a);
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
const Vector3& x_axis = {1, 0, 0},
const Vector3& y_axis = {0, 1, 0},
const Vector3& z_axis = {0, 0, 1});
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
// Matrix4 functions
Matrix4 transpose(const Matrix4& m);
f32 determinant(const Matrix4& m);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 inverse(const Matrix4& m);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 hadamard_product(const Matrix4& a, const Matrix4&b);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 quaternion_to_matrix4(const Quaternion& a);
Quaternion matrix4_to_quaternion(const Matrix4& m);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4 translate(const Vector3& v);
Matrix4 rotate(const Vector3& v, f32 radians);
Matrix4 scale(const Vector3& v);
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top);
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far);
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far);
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near);
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Matrix4
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
Quaternion
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up = {0, 1, 0});
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
} // namespace math
} // namespace gb
#endif // GB_INCLUDE_GB_HPP
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
/// It's a long way to Tipperary
///
///
///
///
///
////////////////////////////////
/// Implemenation ///
////////////////////////////////
#ifdef GB_IMPLEMENTATION
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
#include <float.h>
#include <math.h>
#include <stdarg.h>
#include <time.h>
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
#ifdef GB_SYSTEM_WINDOWS
#include <windows.h>
#endif
2015-09-27 15:43:22 -04:00
inline void
2015-09-28 15:31:26 -04:00
gb__assert_handler(bool condition, const char* condition_str,
const char* filename, size_t line,
const char* error_text, ...)
2015-09-27 15:43:22 -04:00
{
2015-09-28 15:31:26 -04:00
if (condition)
return;
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
fprintf(stderr, "ASSERT! %s(%d): %s", filename, line, condition_str);
if (error_text)
{
fprintf(stderr, " - ");
va_list args;
va_start(args, error_text);
vfprintf(stderr, error_text, args);
va_end(args);
}
fprintf(stderr, "\n");
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
*(int*)0 = 0; // TODO(bill): Use a better way to assert
}
2015-09-27 15:43:22 -04:00
2015-09-28 15:31:26 -04:00
namespace gb
{
2015-09-27 14:03:47 -04:00
////////////////////////////////
/// Memory ///
////////////////////////////////
Mutex::Mutex()
{
#ifdef GB_SYSTEM_WINDOWS
win32_mutex = CreateMutex(0, 0, 0);
#else
pthread_mutex_init(&posix_mutex, nullptr);
#endif
}
Mutex::~Mutex()
{
#ifdef GB_SYSTEM_WINDOWS
CloseHandle(win32_mutex);
#else
pthread_mutex_destroy(&posix_mutex);
#endif
}
void lock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
WaitForSingleObject(mutex.win32_mutex, INFINITE);
#else
pthread_mutex_lock(&mutex.posix_mutex);
#endif
}
bool try_lock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
return WaitForSingleObject(mutex.win32_mutex, 0) == WAIT_OBJECT_0;
#else
return pthread_mutex_trylock(&mutex.posix_mutex) == 0;
#endif
}
void unlock_mutex(Mutex& mutex)
{
#ifdef GB_SYSTEM_WINDOWS
ReleaseMutex(mutex.win32_mutex);
#else
pthread_mutex_unlock(&mutex.posix_mutex);
#endif
}
Heap_Allocator::~Heap_Allocator()
{
GB_ASSERT(allocation_count == 0 && total_allocated() == 0,
"Heap Allocator: allocation count = %lld; total allocated = %lld",
allocation_count, total_allocated());
}
void*
Heap_Allocator::alloc(usize size, usize align)
{
lock_mutex(mutex);
defer(unlock_mutex(mutex));
const usize total = size + align + sizeof(Header);
2015-09-27 15:43:22 -04:00
Header* h = (Header*)::malloc(total);
2015-09-27 14:03:47 -04:00
h->size = total;
void* data = align_forward(h + 1, align);
{ // Pad header
usize* ptr = (usize*)(h+1);
while (ptr != data)
*ptr++ = GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE;
}
total_allocated_count += total;
allocation_count++;
return data;
}
void
Heap_Allocator::dealloc(void* ptr)
{
if (!ptr)
return;
lock_mutex(mutex);
defer(unlock_mutex(mutex));
2015-09-27 15:43:22 -04:00
Header* h = get_header_ptr(ptr);
2015-09-27 14:03:47 -04:00
total_allocated_count -= h->size;
allocation_count--;
2015-09-27 15:43:22 -04:00
::free(h);
2015-09-27 14:03:47 -04:00
}
2015-09-27 15:43:22 -04:00
s64
2015-09-27 14:03:47 -04:00
Heap_Allocator::allocated_size(const void* ptr)
{
lock_mutex(mutex);
defer(unlock_mutex(mutex));
2015-09-27 15:43:22 -04:00
return get_header_ptr(ptr)->size;
2015-09-27 14:03:47 -04:00
}
2015-09-27 15:43:22 -04:00
s64
2015-09-27 14:03:47 -04:00
Heap_Allocator::total_allocated()
{
return total_allocated_count;
}
2015-09-27 15:43:22 -04:00
Heap_Allocator::Header*
Heap_Allocator::get_header_ptr(const void* ptr)
{
const usize* data = (usize*)ptr;
data--;
while (*data == GB_HEAP_ALLOCATOR_HEADER_PAD_VALUE)
data--;
return (Heap_Allocator::Header*)data;
}
2015-09-27 14:03:47 -04:00
void* Arena_Allocator::alloc(usize size_init, usize align)
{
usize size = size_init;
usize alignment_offset = get_alignment_offset(align);
size += alignment_offset;
GB_ASSERT(size >= size_init);
GB_ASSERT(total_allocated_count + size <= (usize)base_size);
void* ptr = base + total_allocated_count + alignment_offset;
total_allocated_count += size;
return ptr;
}
2015-09-27 15:43:22 -04:00
s64 Arena_Allocator::allocated_size(const void* ptr)
2015-09-27 14:03:47 -04:00
{
return -1;
}
2015-09-27 15:43:22 -04:00
s64 Arena_Allocator::total_allocated()
2015-09-27 14:03:47 -04:00
{
return total_allocated_count;
}
usize Arena_Allocator::get_alignment_offset(usize align)
{
usize offset = 0;
usize result_pointer = (usize)((uintptr)base + total_allocated_count);
usize alignment_mask = align - 1;
if (result_pointer & alignment_mask)
offset = align - (result_pointer & alignment_mask);
return offset;
}
usize Arena_Allocator::get_remaining_space(usize align)
{
return base_size - (total_allocated_count + get_alignment_offset(align));
}
void Arena_Allocator::check()
{
GB_ASSERT(temp_count == 0);
}
////////////////////////////////
2015-09-28 15:31:26 -04:00
/// Time ///
2015-09-27 14:03:47 -04:00
////////////////////////////////
2015-09-28 15:31:26 -04:00
#ifdef GB_SYSTEM_WINDOWS
static LARGE_INTEGER
win32_get_frequency()
{
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
return f;
}
Time time_now()
{
// NOTE(bill): std::chrono does not have a good enough precision in MSVC12
// and below. This may have been fixed in MSVC14 but unsure as of yet.
// Force the following code to run on first core
// NOTE(bill): See
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
HANDLE currentThread = GetCurrentThread();
DWORD_PTR previousMask = SetThreadAffinityMask(currentThread, 1);
// Get the frequency of the performance counter
// It is constant across the program's lifetime
static LARGE_INTEGER s_frequency = win32_get_frequency();
// Get the current time
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
// Restore the thread affinity
SetThreadAffinityMask(currentThread, previousMask);
return microseconds(1000000ll * t.QuadPart / s_frequency.QuadPart);
}
void time_sleep(Time t)
{
if (t.microseconds <= 0)
return;
// Get the supported timer resolutions on this system
TIMECAPS tc;
timeGetDevCaps(&tc, sizeof(TIMECAPS));
// Set the timer resolution to the minimum for the Sleep call
timeBeginPeriod(tc.wPeriodMin);
// Wait...
::Sleep(time_as_milliseconds(t));
// Reset the timer resolution back to the system default
timeBeginPeriod(tc.wPeriodMin);
}
#else
Time time_now()
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
return milliseconds((spec.tv_sec * 1000000ll) + (spec.tv_nsec * 1000ll));
}
void time_sleep(Time t)
{
if (t.microseconds <= 0)
return;
struct timespec spec = {};
spec.tv_sec = static_cast<s64>(time_as_seconds(t));
spec.tv_nsec = 1000ll * (time_as_microseconds(t) % 1000000ll);
nanosleep(&spec, nullptr);
}
#endif
Time seconds(f32 s) { return {s * 1000000ll}; }
Time milliseconds(s32 ms) { return {ms * 1000l}; }
Time microseconds(s64 us) { return {us}; }
f32 time_as_seconds(Time t) { return t.microseconds / 1000000.0f; }
s32 time_as_milliseconds(Time t) { return t.microseconds / 1000l; }
s64 time_as_microseconds(Time t) { return t.microseconds; }
bool operator==(Time left, Time right)
{
return left.microseconds == right.microseconds;
}
bool operator!=(Time left, Time right)
{
return !operator==(left, right);
}
bool operator<(Time left, Time right)
{
return left.microseconds < right.microseconds;
}
bool operator>(Time left, Time right)
{
return left.microseconds > right.microseconds;
}
bool operator<=(Time left, Time right)
{
return left.microseconds <= right.microseconds;
}
bool operator>=(Time left, Time right)
{
return left.microseconds >= right.microseconds;
}
Time operator-(Time right)
{
return {-right.microseconds};
}
Time operator+(Time left, Time right)
{
return {left.microseconds + right.microseconds};
}
Time operator-(Time left, Time right)
{
return {left.microseconds - right.microseconds};
}
Time& operator+=(Time& left, Time right)
{
return (left = left + right);
}
Time& operator-=(Time& left, Time right)
{
return (left = left - right);
}
Time operator*(Time left, f32 right)
{
return seconds(time_as_seconds(left) * right);
}
Time operator*(Time left, s64 right)
{
return microseconds(time_as_microseconds(left) * right);
}
Time operator*(f32 left, Time right)
{
return seconds(time_as_seconds(right) * left);
}
Time operator*(s64 left, Time right)
{
return microseconds(time_as_microseconds(right) * left);
}
Time& operator*=(Time& left, f32 right)
{
return (left = left * right);
}
Time& operator*=(Time& left, s64 right)
{
return (left = left * right);
}
Time operator/(Time left, f32 right)
{
return seconds(time_as_seconds(left) / right);
}
Time operator/(Time left, s64 right)
{
return microseconds(time_as_microseconds(left) / right);
}
Time& operator/=(Time& left, f32 right)
{
return (left = left / right);
}
Time& operator/=(Time& left, s64 right)
{
return (left = left / right);
}
f32 operator/(Time left, Time right)
{
return time_as_seconds(left) / time_as_seconds(right);
}
Time operator%(Time left, Time right)
{
return microseconds(time_as_microseconds(left) % time_as_microseconds(right));
}
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
Time& operator%=(Time& left, Time right)
{
return (left = left % right);
}
////////////////////////////////
/// Math ///
////////////////////////////////
2015-09-27 14:03:47 -04:00
const Vector2 VECTOR2_ZERO = {0, 0};
const Vector3 VECTOR3_ZERO = {0, 0, 0};
const Vector4 VECTOR4_ZERO = {0, 0, 0, 0};
const Quaternion QUATERNION_IDENTITY = {0, 0, 0, 1};
const Matrix4 MATRIX4_IDENTITY = {1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1};
////////////////////////////////
/// Math Type Op Overloads ///
////////////////////////////////
// Vector2 Operators
bool operator==(const Vector2& a, const Vector2& b)
{
return (a.x == b.x) && (a.y == b.y);
}
bool operator!=(const Vector2& a, const Vector2& b)
{
return !operator==(a, b);
}
Vector2 operator-(const Vector2& a)
{
return {-a.x, -a.y};
}
Vector2 operator+(const Vector2& a, const Vector2& b)
{
return {a.x + b.x, a.y + b.y};
}
Vector2 operator-(const Vector2& a, const Vector2& b)
{
return {a.x - b.x, a.y - b.y};
}
Vector2 operator*(const Vector2& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar};
}
Vector2 operator*(f32 scalar, const Vector2& a)
{
return {a.x * scalar, a.y * scalar};
}
Vector2 operator/(const Vector2& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar};
}
Vector2 operator*(const Vector2& a, const Vector2& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y};
}
Vector2 operator/(const Vector2& a, const Vector2& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y};
}
Vector2& operator+=(Vector2& a, const Vector2& b)
{
a.x += b.x;
a.y += b.y;
return a;
}
Vector2& operator-=(Vector2& a, const Vector2& b)
{
a.x -= b.x;
a.y -= b.y;
return a;
}
Vector2& operator*=(Vector2& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
return a;
}
Vector2& operator/=(Vector2& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
return a;
}
// Vector3 Operators
bool operator==(const Vector3& a, const Vector3& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z);
}
bool operator!=(const Vector3& a, const Vector3& b)
{
return !operator==(a, b);
}
Vector3 operator-(const Vector3& a)
{
return {-a.x, -a.y, -a.z};
}
Vector3 operator+(const Vector3& a, const Vector3& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z};
}
Vector3 operator-(const Vector3& a, const Vector3& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z};
}
Vector3 operator*(const Vector3& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar, a.z * scalar};
}
Vector3 operator*(f32 scalar, const Vector3& a)
{
return {a.x * scalar, a.y * scalar, a.z * scalar};
}
Vector3 operator/(const Vector3& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar, a.z / scalar};
}
Vector3 operator*(const Vector3& a, const Vector3& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
Vector3 operator/(const Vector3& a, const Vector3& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y, a.z / b.z};
}
Vector3& operator+=(Vector3& a, const Vector3& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
return a;
}
Vector3& operator-=(Vector3& a, const Vector3& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
return a;
}
Vector3& operator*=(Vector3& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
a.z *= scalar;
return a;
}
Vector3& operator/=(Vector3& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
a.z /= scalar;
return a;
}
// Vector4 Operators
bool operator==(const Vector4& a, const Vector4& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
}
bool operator!=(const Vector4& a, const Vector4& b)
{
return !operator==(a, b);
}
Vector4 operator-(const Vector4& a)
{
return {-a.x, -a.y, -a.z, -a.w};
}
Vector4 operator+(const Vector4& a, const Vector4& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}
Vector4 operator-(const Vector4& a, const Vector4& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
}
Vector4 operator*(const Vector4& a, f32 scalar)
{
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
}
Vector4 operator*(f32 scalar, const Vector4& a)
{
return {a.x * scalar, a.y * scalar, a.z * scalar, a.w * scalar};
}
Vector4 operator/(const Vector4& a, f32 scalar)
{
return {a.x / scalar, a.y / scalar, a.z / scalar, a.w / scalar};
}
Vector4 operator*(const Vector4& a, const Vector4& b) // Hadamard Product
{
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
}
Vector4 operator/(const Vector4& a, const Vector4& b) // Hadamard Product
{
return {a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w};
}
Vector4& operator+=(Vector4& a, const Vector4& b)
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
a.w += b.w;
return a;
}
Vector4& operator-=(Vector4& a, const Vector4& b)
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
a.w -= b.w;
return a;
}
Vector4& operator*=(Vector4& a, f32 scalar)
{
a.x *= scalar;
a.y *= scalar;
a.z *= scalar;
a.w *= scalar;
return a;
}
Vector4& operator/=(Vector4& a, f32 scalar)
{
a.x /= scalar;
a.y /= scalar;
a.z /= scalar;
a.w /= scalar;
return a;
}
// Quaternion Operators
bool operator==(const Quaternion& a, const Quaternion& b)
{
return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w);
}
bool operator!=(const Quaternion& a, const Quaternion& b)
{
return !operator==(a, b);
}
Quaternion operator-(const Quaternion& a)
{
return {-a.x, -a.y, -a.z, -a.w};
return {-a.x, -a.y, -a.z, -a.w};
}
Quaternion operator+(const Quaternion& a, const Quaternion& b)
{
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}
Quaternion operator-(const Quaternion& a, const Quaternion& b)
{
return {a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w};
}
Quaternion operator*(const Quaternion& a, const Quaternion& b)
{
Quaternion q = {};
q.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
q.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x;
q.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w;
q.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
return q;
}
Quaternion operator*(const Quaternion& a, f32 s)
{
return {a.x * s, a.y * s, a.z * s, a.w * s};
}
Quaternion operator*(f32 s, const Quaternion& a)
{
return {a.x * s, a.y * s, a.z * s, a.w * s};
}
Quaternion operator/(const Quaternion& a, f32 s)
{
return {a.x / s, a.y / s, a.z / s, a.w / s};
}
// Matrix4 Operators
bool operator==(const Matrix4& a, const Matrix4& b)
{
for (usize i = 0; i < 4; i++)
{
if (a[i] != b[i])
return false;
}
return true;
}
bool operator!=(const Matrix4& a, const Matrix4& b)
{
return !operator==(a, b);
}
Matrix4 operator+(const Matrix4& a, const Matrix4& b)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] + b[i];
return mat;
}
Matrix4 operator-(const Matrix4& a, const Matrix4& b)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] - b[i];
return mat;
}
Matrix4 operator*(const Matrix4& a, const Matrix4& b)
{
Matrix4 result;
result[0] = a[0] * b[0][0] + a[1] * b[0][1] + a[2] * b[0][2] + a[3] * b[0][3];
result[1] = a[0] * b[1][0] + a[1] * b[1][1] + a[2] * b[1][2] + a[3] * b[1][3];
result[2] = a[0] * b[2][0] + a[1] * b[2][1] + a[2] * b[2][2] + a[3] * b[2][3];
result[3] = a[0] * b[3][0] + a[1] * b[3][1] + a[2] * b[3][2] + a[3] * b[3][3];
return result;
}
Vector4 operator*(const Matrix4& a, const Vector4& v)
{
Vector4 mul0 = a[0] * v[0];
Vector4 mul1 = a[1] * v[1];
Vector4 mul2 = a[2] * v[2];
Vector4 mul3 = a[3] * v[3];
Vector4 add0 = mul0 + mul1;
Vector4 add1 = mul2 + mul3;
return add0 + add1;
}
Matrix4 operator*(const Matrix4& a, f32 scalar)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] * scalar;
return mat;
}
Matrix4 operator*(f32 scalar, const Matrix4& a)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] * scalar;
return mat;
}
Matrix4 operator/(const Matrix4& a, f32 scalar)
{
Matrix4 mat;
for (usize i = 0; i < 4; i++)
mat[i] = a[i] / scalar;
return mat;
}
Matrix4& operator+=(Matrix4& a, const Matrix4& b)
{
return (a = a + b);
}
Matrix4& operator-=(Matrix4& a, const Matrix4& b)
{
return (a = a - b);
}
Matrix4& operator*=(Matrix4& a, const Matrix4& b)
{
return (a = a * b);
}
////////////////////////////////
/// Math Functions ///
////////////////////////////////
namespace math
{
const f32 EPSILON = FLT_EPSILON;
const f32 ZERO = 0.0f;
const f32 ONE = 1.0f;
const f32 THIRD = 0.33333333f;
const f32 TWO_THIRDS = 0.66666667f;
const f32 E = 2.718281828f;
const f32 PI = 3.141592654f;
const f32 TAU = 6.283185307f;
const f32 SQRT_2 = 1.414213562f;
const f32 SQRT_3 = 1.732050808f;
// Power
2015-09-28 15:31:26 -04:00
inline f32 sqrt(f32 x) { return ::sqrtf(x); }
2015-09-27 14:03:47 -04:00
inline f32 pow(f32 x, f32 y) { return (f32)::powf(x, y); }
2015-09-28 15:31:26 -04:00
inline f32 cbrt(f32 x) { return (f32)::cbrtf(x); }
2015-09-27 14:03:47 -04:00
inline f32 fast_inv_sqrt(f32 x)
{
const f32 three_halfs = 1.5f;
f32 x2 = x * 0.5f;
f32 y = x;
u32 i = *(u32*)&y; // Evil floating point bit level hacking
// i = 0x5f3759df - (i >> 1); // What the fuck? Old
i = 0x5f375a86 - (i >> 1); // What the fuck? Improved!
y = *(f32*)&i;
y = y * (three_halfs - (x2 * y * y)); // 1st iteration
// y = y * (three_halfs - (x2 * y * y)); // 2nd iteration, this can be removed
return y;
}
// Trigonometric
inline f32 sin(f32 radians) { return ::sinf(radians); }
inline f32 cos(f32 radians) { return ::cosf(radians); }
inline f32 tan(f32 radians) { return ::tanf(radians); }
2015-09-28 15:31:26 -04:00
inline f32 asin(f32 x) { return ::asinf(x); }
inline f32 acos(f32 x) { return ::acosf(x); }
inline f32 atan(f32 x) { return ::atanf(x); }
2015-09-27 14:03:47 -04:00
inline f32 atan2(f32 y, f32 x) { return ::atan2f(y, x); }
inline f32 radians(f32 degrees) { return TAU * degrees / 360.0f; }
inline f32 degrees(f32 radians) { return 360.0f * radians / TAU; }
// Hyperbolic
inline f32 sinh(f32 x) { return ::sinhf(x); }
inline f32 cosh(f32 x) { return ::coshf(x); }
inline f32 tanh(f32 x) { return ::tanhf(x); }
inline f32 asinh(f32 x) { return ::asinhf(x); }
inline f32 acosh(f32 x) { return ::acoshf(x); }
inline f32 atanh(f32 x) { return ::atanhf(x); }
// Rounding
2015-09-28 15:31:26 -04:00
inline f32 ceil(f32 x) { return ::ceilf(x); }
inline f32 floor(f32 x) { return ::floorf(x); }
2015-09-27 14:03:47 -04:00
inline f32 mod(f32 x, f32 y) { return ::fmodf(x, y); }
2015-09-28 15:31:26 -04:00
inline f32 truncate(f32 x) { return ::truncf(x); }
inline f32 round(f32 x) { return ::roundf(x); }
2015-09-27 14:03:47 -04:00
inline s32 sign(s32 x) { return x >= 0 ? +1 : -1; }
inline s64 sign(s64 x) { return x >= 0 ? +1 : -1; }
inline f32 sign(f32 x) { return x >= 0 ? +1 : -1; }
// Other
inline f32 abs(f32 x)
{
u32 i = reinterpret_cast<const u32&>(x);
i &= 0x7FFFFFFFul;
return reinterpret_cast<const f32&>(i);
}
inline s8 abs(s8 x)
{
2015-09-28 15:31:26 -04:00
u8 i = reinterpret_cast<const u8&>(x);
2015-09-27 14:03:47 -04:00
i &= 0x7Fu;
return reinterpret_cast<const s8&>(i);
}
inline s16 abs(s16 x)
{
u16 i = reinterpret_cast<const u16&>(x);
i &= 0x7FFFu;
return reinterpret_cast<const s16&>(i);
}
inline s32 abs(s32 x)
{
u32 i = reinterpret_cast<const u32&>(x);
i &= 0x7FFFFFFFul;
return reinterpret_cast<const s32&>(i);
}
inline s64 abs(s64 x)
{
u64 i = reinterpret_cast<const u64&>(x);
i &= 0x7FFFFFFFFFFFFFFFull;
return reinterpret_cast<const s64&>(i);
}
// Vector2 functions
f32 dot(const Vector2& a, const Vector2& b)
{
return a.x * b.x + a.y * b.y;
}
f32 cross(const Vector2& a, const Vector2& b)
{
return a.x * b.y - a.y * b.x;
}
f32 magnitude(const Vector2& a)
{
return math::sqrt(math::dot(a, a));
}
Vector2 normalize(const Vector2& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector2 hadamard_product(const Vector2& a, const Vector2& b)
{
return {a.x * b.x, a.y * b.y};
}
// Vector3 functions
f32 dot(const Vector3& a, const Vector3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
Vector3 cross(const Vector3& a, const Vector3& b)
{
return {
a.y * b.z - b.y * a.z, // x
a.z * b.x - b.z * a.x, // y
a.x * b.y - b.x * a.y // z
};
}
f32 magnitude(const Vector3& a)
{
return math::sqrt(math::dot(a, a));
}
Vector3 normalize(const Vector3& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector3 hadamard_product(const Vector3& a, const Vector3& b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
// Vector4 functions
f32 dot(const Vector4& a, const Vector4& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
f32 magnitude(const Vector4& a)
{
return math::sqrt(math::dot(a, a));
}
Vector4 normalize(const Vector4& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Vector4 hadamard_product(const Vector4& a, const Vector4& b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w};
}
// Quaternion functions
f32 dot(const Quaternion& a, const Quaternion& b)
{
return math::dot(a.xyz, b.xyz) + a.w*b.w;
}
Quaternion cross(const Quaternion& a, const Quaternion& b)
{
return {a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z,
a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x,
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z};
}
f32 magnitude(const Quaternion& a)
{
return math::sqrt(math::dot(a, a));
}
Quaternion normalize(const Quaternion& a)
{
f32 m = 1.0f / magnitude(a);
return a * m;
}
Quaternion conjugate(const Quaternion& a)
{
return {-a.x, -a.y, -a.z, a.w};
}
Quaternion inverse(const Quaternion& a)
{
f32 m = 1.0f / dot(a, a);
return math::conjugate(a) * m;
}
Vector3 operator*(const Quaternion& a, const Vector3& v) // Rotate v by q
{
// return (q * Quaternion(v, 0) * conjugate(q)).xyz; // More Expensive
const Vector3 t = 2.0f * cross(a.xyz, v);
return (v + a.w * t + cross(a.xyz, t));
}
f32 quaternion_angle(const Quaternion& a)
{
return 2.0f * math::acos(a.w);
}
Vector3 quaternion_axis(const Quaternion& a)
{
f32 s2 = 1.0f - a.w * a.w;
if (s2 <= 0.0f)
return {0, 0, 1};
f32 invs2 = 1.0f / math::sqrt(s2);
return a.xyz * invs2;
}
Quaternion axis_angle(const Vector3& axis, f32 radians)
{
Vector3 a = math::normalize(axis);
f32 s = math::sin(0.5f * radians);
Quaternion q;
q.xyz = a * s;
q.w = math::cos(0.5f * radians);
return q;
}
f32 quaternion_roll(const Quaternion& a)
{
return math::atan2(2.0f * a.x * a.y + a.z * a.w,
a.x * a.x + a.w * a.w - a.y * a.y - a.z * a.z);
}
f32 quaternion_pitch(const Quaternion& a)
{
return math::atan2(2.0f * a.y * a.z + a.w * a.x,
a.w * a.w - a.x * a.x - a.y * a.y + a.z * a.z);
}
f32 quaternion_yaw(const Quaternion& a)
{
return math::asin(-2.0f * (a.x * a.z - a.w * a.y));
}
Euler_Angles quaternion_to_euler_angles(const Quaternion& a)
{
return {quaternion_pitch(a), quaternion_yaw(a), quaternion_roll(a)};
}
Quaternion euler_angles_to_quaternion(const Euler_Angles& e,
const Vector3& x_axis,
const Vector3& y_axis,
const Vector3& z_axis)
{
Quaternion p = axis_angle(x_axis, e.pitch);
Quaternion y = axis_angle(y_axis, e.yaw);
Quaternion r = axis_angle(z_axis, e.roll);
return y * p * r;
}
// Matrix4 functions
Matrix4 transpose(const Matrix4& m)
{
Matrix4 result;
for (usize i = 0; i < 4; i++)
{
for (usize j = 0; j < 4; j++)
result[i][j] = m[j][i];
}
return result;
}
f32 determinant(const Matrix4& m)
{
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = {coef00, coef00, coef02, coef03};
Vector4 fac1 = {coef04, coef04, coef06, coef07};
Vector4 fac2 = {coef08, coef08, coef10, coef11};
Vector4 fac3 = {coef12, coef12, coef14, coef15};
Vector4 fac4 = {coef16, coef16, coef18, coef19};
Vector4 fac5 = {coef20, coef20, coef22, coef23};
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
Vector4 signA = {+1, -1, +1, -1};
Vector4 signB = {-1, +1, -1, +1};
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
Vector4 dot0 = m[0] * row0;
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
return dot1;
}
Matrix4 inverse(const Matrix4& m)
{
f32 coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
f32 coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
f32 coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
f32 coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
f32 coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
f32 coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
f32 coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
f32 coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
f32 coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
f32 coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
f32 coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
f32 coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
f32 coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
f32 coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
f32 coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
f32 coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
f32 coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
f32 coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = {coef00, coef00, coef02, coef03};
Vector4 fac1 = {coef04, coef04, coef06, coef07};
Vector4 fac2 = {coef08, coef08, coef10, coef11};
Vector4 fac3 = {coef12, coef12, coef14, coef15};
Vector4 fac4 = {coef16, coef16, coef18, coef19};
Vector4 fac5 = {coef20, coef20, coef22, coef23};
Vector4 vec0 = {m[1][0], m[0][0], m[0][0], m[0][0]};
Vector4 vec1 = {m[1][1], m[0][1], m[0][1], m[0][1]};
Vector4 vec2 = {m[1][2], m[0][2], m[0][2], m[0][2]};
Vector4 vec3 = {m[1][3], m[0][3], m[0][3], m[0][3]};
Vector4 inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2;
Vector4 inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4;
Vector4 inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5;
Vector4 inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5;
Vector4 signA = {+1, -1, +1, -1};
Vector4 signB = {-1, +1, -1, +1};
Matrix4 inverse = {inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB};
Vector4 row0 = {inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0]};
Vector4 dot0 = m[0] * row0;
f32 dot1 = (dot0[0] + dot0[1]) + (dot0[2] + dot0[3]);
f32 oneOverDeterminant = 1.0f / dot1;
return inverse * oneOverDeterminant;
}
Matrix4 hadamard_product(const Matrix4& a, const Matrix4& b)
{
Matrix4 result;
for (usize i = 0; i < 4; i++)
result[i] = a[i] * b[i];
return result;
}
Matrix4 quaternion_to_matrix4(const Quaternion& q)
{
Matrix4 mat = MATRIX4_IDENTITY;
Quaternion a = math::normalize(q);
f32 xx = a.x * a.x;
f32 yy = a.y * a.y;
f32 zz = a.z * a.z;
f32 xy = a.x * a.y;
f32 xz = a.x * a.z;
f32 yz = a.y * a.z;
f32 wx = a.w * a.x;
f32 wy = a.w * a.y;
f32 wz = a.w * a.z;
mat[0][0] = 1.0f - 2.0f * (yy + zz);
2015-09-28 15:31:26 -04:00
mat[0][1] = 2.0f * (xy + wz);
mat[0][2] = 2.0f * (xz - wy);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
mat[1][0] = 2.0f * (xy - wz);
2015-09-27 14:03:47 -04:00
mat[1][1] = 1.0f - 2.0f * (xx + zz);
2015-09-28 15:31:26 -04:00
mat[1][2] = 2.0f * (yz + wx);
2015-09-27 14:03:47 -04:00
2015-09-28 15:31:26 -04:00
mat[2][0] = 2.0f * (xz + wy);
mat[2][1] = 2.0f * (yz - wx);
2015-09-27 14:03:47 -04:00
mat[2][2] = 1.0f - 2.0f * (xx + yy);
return mat;
}
Quaternion matrix4_to_quaternion(const Matrix4& m)
{
f32 four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
f32 four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
f32 four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
f32 four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
s32 biggestIndex = 0;
f32 four_biggest_squared_minus_1 = four_w_squared_minus_1;
if (four_x_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_x_squared_minus_1;
2015-09-28 15:31:26 -04:00
biggestIndex = 1;
2015-09-27 14:03:47 -04:00
}
if (four_y_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_y_squared_minus_1;
2015-09-28 15:31:26 -04:00
biggestIndex = 2;
2015-09-27 14:03:47 -04:00
}
if (four_z_squared_minus_1 > four_biggest_squared_minus_1)
{
four_biggest_squared_minus_1 = four_z_squared_minus_1;
2015-09-28 15:31:26 -04:00
biggestIndex = 3;
2015-09-27 14:03:47 -04:00
}
f32 biggestVal = math::sqrt(four_biggest_squared_minus_1 + 1.0f) * 0.5f;
f32 mult = 0.25f / biggestVal;
Quaternion q = QUATERNION_IDENTITY;
switch (biggestIndex)
{
case 0:
{
q.w = biggestVal;
q.x = (m[1][2] - m[2][1]) * mult;
q.y = (m[2][0] - m[0][2]) * mult;
q.z = (m[0][1] - m[1][0]) * mult;
}
break;
case 1:
{
q.w = (m[1][2] - m[2][1]) * mult;
q.x = biggestVal;
q.y = (m[0][1] + m[1][0]) * mult;
q.z = (m[2][0] + m[0][2]) * mult;
}
break;
case 2:
{
q.w = (m[2][0] - m[0][2]) * mult;
q.x = (m[0][1] + m[1][0]) * mult;
q.y = biggestVal;
q.z = (m[1][2] + m[2][1]) * mult;
}
break;
case 3:
{
q.w = (m[0][1] - m[1][0]) * mult;
q.x = (m[2][0] + m[0][2]) * mult;
q.y = (m[1][2] + m[2][1]) * mult;
q.z = biggestVal;
}
break;
default: // Should never actually get here. Just for sanities sake.
{
GB_ASSERT(false, "How did you get here?!");
}
break;
}
return q;
}
Matrix4 translate(const Vector3& v)
{
Matrix4 result = MATRIX4_IDENTITY;
result[3].xyz = v;
result[3].w = 1;
return result;
}
Matrix4 rotate(const Vector3& v, f32 radians)
{
const f32 c = math::cos(radians);
const f32 s = math::sin(radians);
const Vector3 axis = math::normalize(v);
const Vector3 t = (1.0f - c) * axis;
Matrix4 rot = MATRIX4_IDENTITY;
2015-09-28 15:31:26 -04:00
rot[0][0] = c + t.x * axis.x;
rot[0][1] = 0 + t.x * axis.y + s * axis.z;
rot[0][2] = 0 + t.x * axis.z - s * axis.y;
rot[0][3] = 0;
2015-09-27 14:03:47 -04:00
rot[1][0] = 0 + t.y * axis.x - s * axis.z;
rot[1][1] = c + t.y * axis.y;
rot[1][2] = 0 + t.y * axis.z + s * axis.x;
rot[1][3] = 0;
rot[2][0] = 0 + t.z * axis.x + s * axis.y;
rot[2][1] = 0 + t.z * axis.y - s * axis.x;
rot[2][2] = c + t.z * axis.z;
rot[2][3] = 0;
return rot;
}
Matrix4 scale(const Vector3& v)
{
return { v.x, 0, 0, 0,
0, v.y, 0, 0,
0, 0, v.z, 0,
0, 0, 0, 1 };
}
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top)
{
Matrix4 result = MATRIX4_IDENTITY;
result[0][0] = 2.0f / (right - left);
result[1][1] = 2.0f / (top - bottom);
result[2][2] = -1.0f;
result[3][1] = -(right + left) / (right - left);
result[3][1] = -(top + bottom) / (top - bottom);
return result;
}
Matrix4 ortho(f32 left, f32 right, f32 bottom, f32 top, f32 z_near, f32 z_far)
{
Matrix4 result = MATRIX4_IDENTITY;
result[0][0] = 2.0f / (right - left);
result[1][1] = 2.0f / (top - bottom);
result[2][2] = -2.0f / (z_far - z_near);
result[3][0] = -(right + left) / (right - left);
result[3][1] = -(top + bottom) / (top - bottom);
result[3][2] = -(z_far + z_near) / (z_far - z_near);
return result;
}
Matrix4 perspective(f32 fovy_radians, f32 aspect, f32 z_near, f32 z_far)
{
GB_ASSERT(math::abs(aspect) > 0.0f,
"math::perspective `fovy_radians` is %f", fovy_radians);
f32 tan_half_fovy = math::tan(0.5f * fovy_radians);
Matrix4 result = {};
result[0][0] = 1.0f / (aspect * tan_half_fovy);
result[1][1] = 1.0f / (tan_half_fovy);
result[2][2] = -(z_far + z_near) / (z_far - z_near);
result[2][3] = -1.0f;
result[3][2] = -2.0f * z_far * z_near / (z_far - z_near);
return result;
}
Matrix4 infinite_perspective(f32 fovy_radians, f32 aspect, f32 z_near)
{
f32 range = math::tan(0.5f * fovy_radians) * z_near;
f32 left = -range * aspect;
f32 right = range * aspect;
f32 bottom = -range;
f32 top = range;
Matrix4 result = {};
result[0][0] = (2.0f * z_near) / (right - left);
result[1][1] = (2.0f * z_near) / (top - bottom);
result[2][2] = -1.0f;
result[2][3] = -1.0f;
result[3][2] = -2.0f * z_near;
return result;
}
Matrix4
look_at_matrix4(const Vector3& eye, const Vector3& center, const Vector3& up)
{
const Vector3 f = math::normalize(center - eye);
const Vector3 s = math::normalize(math::cross(f, up));
const Vector3 u = math::cross(s, f);
Matrix4 result = MATRIX4_IDENTITY;
2015-09-28 15:31:26 -04:00
result[0][0] = +s.x;
result[1][0] = +s.y;
result[2][0] = +s.z;
2015-09-27 14:03:47 -04:00
result[0][1] = +u.x;
result[1][1] = +u.y;
result[2][1] = +u.z;
result[0][2] = -f.x;
result[1][2] = -f.y;
result[2][2] = -f.z;
result[3][0] = -math::dot(s, eye);
result[3][1] = -math::dot(u, eye);
result[3][2] = +math::dot(f, eye);
return result;
}
Quaternion
look_at_quaternion(const Vector3& eye, const Vector3& center, const Vector3& up)
{
const f32 similar = 0.001f;
if (magnitude(center - eye) < similar)
return QUATERNION_IDENTITY; // You cannot look at where you are!
// TODO(bill): Implement using just quaternions
return matrix4_to_quaternion(look_at_matrix4(eye, center, up));
}
} // namespace math
} // namespace gb
#endif // GB_IMPLEMENTATION