1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
;;; Copyright (C) Peter McGoron 2024
;;; This program is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation, version 3 of the License.
;;;
;;; This program is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program. If not, see <https://www.gnu.org/licenses/>.
;;; Persistent AVL sets and maps using JOIN.
;;; ;;;;;;;;;;;;;;;;
;;; Nodes, direction
;;; ;;;;;;;;;;;;;;;;
;;; Returns the slot number for
;;; =: The node data
;;; h: the height
;;; <: the left child
;;; >: the right child
(define %set:accessor
(lambda (sym)
(cond
((eq? sym '=) 0)
((eq? sym 'h) 1)
((eq? sym '<) 2)
((eq? sym '>) 3)
(else (error "invalid direction")))))
;;; Gets data from node value given accessor symbol.
(define set:get
(lambda (t sym)
(let ((acc (%set:accessor sym)))
(if (null? t)
(cond
((eq? sym 'h) 0)
(else '()))
(vector-ref t (%set:accessor sym))))))
(define %set->sexpr
(lambda (node)
(if (null? node)
'()
(list (list 'data (set:get node '=))
(list '< (%set->sexpr (set:get node '<)))
(list '> (%set->sexpr (set:get node '>)))))))
(cond-expand
(chicken
(import (chicken process))
(define (set:display set)
(call-with-output-pipe
"dot -T png > /tmp/dot.png"
(lambda (out)
(letrec
((D
(lambda (o)
(display o out)
(display o)))
(dump-data
(lambda (tree)
(D "\"")
(D (set:get tree '=))
(D "\"")))
(connect
(lambda (parent child)
(if (null? child)
'()
(begin
(dump-data parent)
(D " -> ")
(dump-data child)
(D " ;\n")
(loop child)))))
(loop
(lambda (parent)
(if (null? parent)
'()
(begin
(connect parent (set:get parent '<))
(connect parent (set:get parent '>)))))))
(D "digraph t {\n")
(loop set)
(D "}\n"))))
(system "imv-wayland /tmp/dot.png")))
(else
(define set:display
(lambda (set)
(display (%set->sexpr set))
(newline)))))
;;; Get the height of a node, handling the empty node.
(define %set:height
(lambda (node)
(if (null? node)
0
(set:get node 'h))))
;;; Get the difference between the heights of two trees.
(define %set:height-diff
(lambda (t1 t2)
(- (%set:height t1) (%set:height t2))))
;;; Get the balance factor of a tree.
(define %set:bal
(lambda (t) (%set:height-diff (set:get t '<)
(set:get t '>))))
;;; Set data in node given accessor symbol.
(define %set:set!
(lambda (node dir x)
(vector-set! node (%set:accessor dir) x)))
;;; Construct a new tree with data VAL.
(define %set:node
(lambda (val dir1 node1 dir2 node2)
(let ((node (vector val (+ 1
(max (%set:height node1)
(%set:height node2)))
'() '())))
(%set:set! node dir1 node1)
(%set:set! node dir2 node2)
node)))
(define set:node-new-val
(lambda (node newval)
(%set:node newval
'< (set:get node '<)
'> (set:get node '>))))
(define %set:invdir
(lambda (dir)
(cond
((eq? dir '<) '>)
((eq? dir '>) '<)
(else (error "invalid direction")))))
;;; ;;;;;;;;;;;;;;
;;; Tree rotations
;;; ;;;;;;;;;;;;;;
;;; Rotate NODE to the left (dir = '>) or right (dir = '<).
(define %set:rotate
(lambda (node dir)
(if (null? node)
#f
(let ((invdir (%set:invdir dir)))
(let ((child (set:get node invdir)))
(let ((to-swap (set:get child dir)))
(%set:node (set:get child '=)
dir (%set:node (set:get node '=)
dir (set:get node dir)
invdir to-swap)
invdir (set:get child invdir))))))))
;;; ;;;;;;;;;;;;;;;;;;;
;;; JOIN function for AVL trees.
;;; ;;;;;;;;;;;;;;;;;;;
;;; Handles rebalancing of the tree.
(define %set:join
(lambda (heavier val lighter heavier-dir)
(let ((heavy-val (set:get heavier '=))
(lighter-dir (%set:invdir heavier-dir)))
(let ((heavy-heavy (set:get heavier heavier-dir))
(heavy-light (set:get heavier lighter-dir)))
(if (<= (abs (%set:height-diff heavy-light lighter)) 1)
(let ((node (%set:node val
heavier-dir heavy-light
lighter-dir lighter)))
(if (<= (%set:height-diff node heavy-heavy) 1)
(%set:node heavy-val
heavier-dir heavy-heavy
lighter-dir node)
(%set:rotate (%set:node heavy-val
heavier-dir heavy-heavy
lighter-dir
(%set:rotate node lighter-dir))
heavier-dir)))
(let ((new-light (%set:join heavy-light val lighter heavier-dir)))
(let ((node (%set:node heavy-val
heavier-dir heavy-heavy
lighter-dir new-light)))
(if (<= (abs (%set:bal node)) 1)
node
(%set:rotate node heavier-dir)))))))))
(define set:join
(lambda (val dir1 node1 dir2 node2)
(let ((diff (%set:height-diff node1 node2)))
(cond
((> diff 1) (%set:join node1 val node2 dir1))
((< diff -1) (%set:join node2 val node1 dir2))
(else (%set:node val dir1 node1 dir2 node2))))))
(define set:join2
(letrec
((join2
(lambda (left right)
(if (null? left)
right
(let ((split-last-tree (split-last left)))
(set:join (set:get split-last-tree '=)
'< (set:get split-last-tree '<)
'> right)))))
(split-last
(lambda (tree)
(let ((right (set:get tree '>)))
(if (null? right)
tree
(let ((last (split-last right)))
(%set:node (set:get last '=)
'< (set:join (set:get tree '=)
'< (set:get tree '<)
'> (set:get last '>))
'> '())))))))
join2))
(define set:split
(lambda (<=>)
(letrec
((split
(lambda (set data)
(if (null? set)
(%set:node #f '< '() '> '())
(let ((set-data (set:get set '=)))
(let ((dir (<=> data set-data)))
(if (eq? dir '=)
(set:node-new-val set #t)
(let ((new-tree (split (set:get set dir) data))
(invdir (%set:invdir dir)))
(%set:node (set:get new-tree '=)
dir (set:get new-tree dir)
invdir (set:join set-data
dir (set:get new-tree invdir)
invdir (set:get set invdir)))))))))))
split)))
;;; ;;;;;;;;;;;;;
;;; Set functions
;;; ;;;;;;;;;;;;;
;;; Generate union operation from split operation.
;;; Union prioritizes data in PRIORITY over keys in SECONDARY.
(define set:union
(lambda (split)
(letrec
((union
(lambda (priority secondary)
(cond
((null? priority) secondary)
((null? secondary) priority)
(else
(let ((key (set:get priority '=)))
(let ((split-tree (split secondary key)))
(set:join key
'< (union (set:get priority '<)
(set:get split-tree '<))
'> (union (set:get priority '>)
(set:get split-tree '>))))))))))
union)))
;;; ;;;;;;;;;;;;;;;;;
;;; Element functions
;;; ;;;;;;;;;;;;;;;;;
;;; (SET:IN <=>) generates a search function for comparison function <=>.
;;; (SEARCH TREE DATA) searches TREE for a node that matches DATA.
;;; It will return the node that contains the matched DATA, or '().
(define set:in
(lambda (<=>)
(lambda (tree data)
(letrec
((loop
(lambda (tree)
(if (null? tree)
'()
(let ((dir (<=> data (set:get tree '=))))
(if (eq? dir '=)
tree
(loop (set:get tree dir))))))))
(loop tree)))))
;;; (SET:UPDATE <=>) generates an update function for <=>.
;;; (UPDATE TREE DATA UPDATE) inserts a node with data (UPDATE DATA #F)
;;; into the tree if no node comparing equal to DATA is found, and a node
;;; with data (UPDATE DATA OLD) if OLD compares equal to NODE.
(define set:update
(lambda (<=>)
(lambda (tree data update)
(letrec
((loop
(lambda (tree)
(if (null? tree)
(%set:node (update data '()) '< '() '> '())
(let ((dir (<=> data (set:get tree '=))))
(if (eq? dir '=)
(%set:node (update data tree)
'< (set:get tree '<)
'> (set:get tree '>))
(let ((invdir (%set:invdir dir)))
(set:join (set:get tree '=)
dir (loop (set:get tree dir))
invdir (set:get tree invdir)))))))))
(loop tree)))))
;;; (SET:INSERT <=>) generates an insert function for comparison function
;;; <=>.
;;; (INSERT TREE DATA) inserts a node with DATA into TREE. It returns
;;; (CONS NEWTREE FOUND), where FOUND is the node that was replaced by
;;; the node, and '() otherwise, and NEWTREE is the new root of the tree.
(define set:insert
(lambda (update)
(lambda (tree node)
(let ((found '()))
(let ((newroot (update tree node
(lambda (data oldnode)
(set! found oldnode)
data))))
(cons newroot found))))))
;;; (SET:DELETE <=>) generates a delete function for comparison function
;;; <=>.
;;; (DELETE TREE DATA) deletes a node from TREE that compares equal to
;;; DATA. The function returns (CONS NEWTREE FOUND), where FOUND is the
;;; deleted node, or '() if not found, and NEWTREE is the root of the new
;;; tree.
(define set:delete
(lambda (<=>)
(lambda (tree data)
(let ((found '()))
(letrec
((loop
(lambda (tree)
(if (null? tree)
'()
(let ((dir (<=> data (set:get tree '=))))
(if (eq? dir '=)
(begin
(set! found tree)
(set:join2 (set:get tree '<)
(set:get tree '>)))
(let ((invdir (%set:invdir dir)))
(set:join (set:get tree '=)
dir (loop (set:get tree dir))
invdir (set:get tree invdir)))))))))
(let ((newtree (loop tree)))
(cons newtree found)))))))
;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;; Converting sets to maps
;;;
;;; The conversion stores (CONS KEY VAL) into each pair.
;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;; Convert a <=> for sets to one for maps.
(define set:<=>-to-map
(lambda (<=>)
(lambda (x y)
(<=> (car x) (car y)))))
(define map:key
(lambda (node)
(car (set:get node '=))))
(define map:val
(lambda (node)
(cdr (set:get node '=))))
;;; (UPDATE TREE KEY UPDATE*) runs inserts a node with value
;;; (UPDATE KEY '()) if no node is found comparing equal to KEY, and
;;; (UPDATE KEY NODE) if NODE compared equal to KEY.
(define map:update
(lambda (%update-recursive)
(lambda (tree key update)
(%update-recursive tree (cons key '())
(lambda (_ oldnode)
(cons key
(update key oldnode)))))))
(define map:insert
(lambda (%update-recursive)
(let ((insert (set:insert %update-recursive)))
(lambda (tree key val)
(insert tree (cons key val))))))
(define map:search
(lambda (<=>)
(let ((search (set:in <=>)))
(lambda (tree key)
(search tree (cons key '()))))))
(define map:delete
(lambda (<=>)
(let ((delete (set:delete <=>)))
(lambda (tree key)
(delete tree (cons key '()))))))
(define map:split
(lambda (<=>) (set:split <=>)))
(define map:union
(lambda (split) (set:union split)))
;;; ;;;;;;;;;;;
;;; For strings
;;; ;;;;;;;;;;;
(define integer<=>
(lambda (x y)
(cond
((< x y) '<)
((= x y) '=)
(else '>))))
(define char<=>
(lambda (x y)
(integer<=> (char->integer x)
(char->integer y))))
(define string<=>
(lambda (x y)
(let ((x-len (string-length x))
(y-len (string-length y)))
(letrec ((loop
(lambda (i)
(cond
((and (= i x-len) (= i y-len)) '=)
((= i x-len) '<)
((= i y-len) '>)
(else
(let ((dir (char<=>
(string-ref x i)
(string-ref y i))))
(if (eq? dir '=)
(loop (+ i 1))
dir)))))))
(loop 0)))))
(cond-expand
((and (not miniscm-unslisp) (not r7rs))
(define (list-set! lst n val)
(if (= n 0)
(set-car! lst val)
(list-set! (cdr lst) (- n 1) val))))
(else #f))
(define map:string<=> (set:<=>-to-map string<=>))
(define %smap:update (set:update map:string<=>))
(define smap:update (map:update %smap:update))
(define smap:insert (map:insert %smap:update))
(define smap:search (map:search map:string<=>))
(define smap:delete (map:delete map:string<=>))
(define %smap:split (map:split map:string<=>))
(define smap:union (map:union %smap:split))
(define smap:insert-many
(lambda (smap . pairs)
(fold (lambda (pair smap)
(smap:insert smap (car pair) (cdr pair)))
smap
pairs)))
;;; SYMBOL-TABLE:
;;;
;;; A stateful map from symbols to values.
;;;
;;; (SET! KEY VAL)
;;; (DELETE! KEY)
;;; (GET KEY)
;;; (TYPE)
(define symbol-table
(lambda ()
(let ((table '()))
(letrec ((insert!
(lambda (key val)
(let ((ret (smap:insert table
(symbol->string key)
val)))
(set! table (car ret))
(cdr ret))))
(delete! (lambda (key) (smap:delete table (symbol->string
key))))
(search
(lambda (key . default)
(let ((ret (smap:search table (symbol->string key))))
(if (null? ret)
(if (null? default)
#f
(car default))
(map:val ret))))))
(lambda (op . args)
(cond
((eq? op 'set!) (apply insert! args))
((eq? op 'delete!) (apply delete! args))
((eq? op 'get) (apply search args))
((eq? op 'type) 'symbol-table)
(else (error 'symbol-table 'unknown op args))))))))
;;; ;;;;;
;;; Tests
;;; ;;;;;
;;; LST is a list of elements of the form
;;; (KEY VAL ALREADY-IN)
;;; where ALREADY-IN is #F for an element not in the set, or the value
;;; that should be in the set.
(define %set:operate-all
(lambda (f tree lst)
(if (null? lst)
tree
(let ((key (list-ref (car lst) 0))
(val (list-ref (car lst) 1))
(already-in (list-ref (car lst) 2)))
(let ((insert-return (f tree key val)))
(cond
((and already-in (null? (cdr insert-return)))
"should have been found")
((and already-in (not (equal? already-in
(map:val (cdr insert-return)))))
(display (list already-in
insert-return
(map:val (cdr insert-return))))
(newline)
"found is not correct")
(else (%set:operate-all f (car insert-return) (cdr lst)))))))))
(define %set:insert-all
(lambda (tree lst)
(%set:operate-all smap:insert tree lst)))
(define %set:search-all
(lambda (tree lst)
(%set:operate-all (lambda (tree key _)
(let ((search-res (smap:search tree key)))
(cons tree search-res))) tree lst)))
(define %set:delete-all
(lambda (tree lst)
(%set:operate-all (lambda (tree key _)
(smap:delete tree key)) tree lst)))
(define %set:tests
(list
(cons "rotate right"
(lambda ()
(let ((right (%set:rotate (%set:node 1
'< (%set:node 2
'< (%set:node 3
'< '()
'> '())
'> (%set:node 4
'< '()
'> '()))
'> (%set:node 5 '< '() '> '()))
'>)))
(cond
((not (eqv? (set:get right '=) 2)) "bad parent")
((not (eqv? (set:get (set:get right '>) '=) 1)) "bad right child")
((not (eqv? (set:get (set:get right '<) '=) 3)) "bad left child")
((not (eqv? (set:get (set:get (set:get right '>) '>) '=) 5))
"bad right child of right child")
((not (eqv? (set:get (set:get (set:get right '>) '<) '=) 4))
"bad left child of right child")
(else #t)))))
(cons "rotate left"
(lambda ()
(let ((right (%set:rotate (%set:node 1
'> (%set:node 2
'< (%set:node 3
'< '()
'> '())
'> (%set:node 4
'< '()
'> '()))
'< (%set:node 5 '< '() '> '()))
'<)))
(cond
((not (eqv? (set:get right '=) 2)) "bad parent")
((not (eqv? (set:get (set:get right '>) '=) 4)) "bad right child")
((not (eqv? (set:get (set:get right '<) '=) 1)) "bad left child")
((not (eqv? (set:get (set:get (set:get right '<) '>) '=) 3))
"bad right child of left child")
((not (eqv? (set:get (set:get (set:get right '<) '<) '=) 5))
"bad left child of left child")
(else #t)))))
(cons "insert then delete"
(lambda ()
(let ((insert-return (smap:insert '() "a" 5)))
(cond
((not (pair? insert-return)) "invalid insert return")
((not (null? (cdr insert-return))) "string found in empty tree")
(else
(let ((tree (car insert-return)))
(let ((found (smap:search tree "a")))
(cond
((null? found) "string not in tree")
((not (equal? (map:key tree) "a"))
"returned key not equal to a")
((not (equal? (map:val tree) 5))
"returned value not equal to 5")
(else
(let ((delete-return (smap:delete tree "a")))
(cond
((not (pair? delete-return))
"invalid delete return")
((not (cdr delete-return)) "string not found")
((not (eqv? (car delete-return) '()))
"returned tree not null")
(else #t))))))))))))
(cons "insert a few unique then delete"
(lambda ()
(let ((to-insert (list
(list "abc" 1 #f)
(list "abd" 2 #f)
(list "def" 3 #f)
(list "123aC" 4 #f)
(list "qwe" 5 #f)
(list "123" 5 #f)
(list "lisp" 6 #f)
(list "c" 7 #f)
(list "scm" 8 #f)
(list "algol" 9 #f)
(list "asm" 10 #f)
(list "4" 11 #f)
(list "asme" 12 #f))))
(display "insert all") (newline)
(let ((tree (%set:insert-all '() to-insert)))
(if (string? tree)
tree
(begin
(for-each (lambda (x)
(list-set! x 2 (list-ref x 1)))
to-insert)
(display "search all") (newline)
(let ((res (%set:search-all tree to-insert)))
(if (string? res)
res
(begin
(display "delete all") (newline)
(let ((tree (%set:delete-all tree to-insert)))
(cond
((string? tree) tree)
((not (null? tree)) "did not delete everything")
(else #t))))))))))))
(cons "insert a few, update"
(lambda ()
(let ((tree (%set:insert-all '()
(list
(list "abcd" 1 #f)
(list "efgh" 2 #f)
(list "14293" 3 #f)
(list "abcde" 4 #f)))))
(if (string? tree)
tree
(let ((tree (smap:update tree
"abcde"
(lambda (key oldnode)
10))))
(let ((res (%set:search-all tree
(list
(list "abcd" 1 1)
(list "efgh" 2 2)
(list "14293" 3 3)
(list "abcde" 10 10)))))
(if (string? res)
res
#t)))))))
(cons "union a few"
(lambda ()
(let ((tree1 (%set:insert-all '()
(list
(list "a" 1 #f)
(list "b" 2 #f)
(list "c" 3 #f))))
(tree2 (%set:insert-all '()
(list
(list "c" 4 #f)
(list "d" 5 #f)
(list "e" 6 #f)))))
(let ((tree (smap:union tree1 tree2))
(to-search (list
(list "a" 1 1)
(list "b" 2 2)
(list "c" 3 3)
(list "d" 5 5)
(list "e" 6 6))))
(not (string? (%set:search-all tree to-search)))))))))
|