blob: b65b56ee7bb0ae4163664a14d73a5da36e57f1c1 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
#| Copyright 2024 Peter McGoron
|
| Licensed under the Apache License, Version 2.0 (the "License");
| you may not use this file except in compliance with the License.
| You may obtain a copy of the License at
|
| http://www.apache.org/licenses/LICENSE-2.0
|
| Unless required by applicable law or agreed to in writing, software
| distributed under the License is distributed on an "AS IS" BASIS,
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
| See the License for the specific language governing permissions and
| limitations under the License.
|#
(define-record-type <set>
(raw-set comparator node)
set?
(comparator set-element-comparator)
(node get-node))
(define (check-compatible set1 set2)
(let ((val (binary-compatible set1 set2)))
(if (not val)
(error "sets have different comparators" set1 set2)
val)))
;;; ;;;;;;;;;;;;;;;;
;;; Constructors
;;; ;;;;;;;;;;;;;;;;
(define (set-unfold comparator stop? mapper successor seed)
(let loop ((set '())
(seed seed))
(if (stop? seed)
(raw-set comparator set)
(let ((new-value (mapper seed)))
(loop (insert comparator set new-value)
(successor seed))))))
(define (set comparator . elements)
(list->set comparator elements))
;;; ;;;;;;;;;;;;;;;;;
;;; Predicates (besides set?)
;;; ;;;;;;;;;;;;;;;;;
(define sentinel-value (cons #f #f))
(define (set-contains? set element)
(not (eq? (search (set-element-comparator set)
element
(get-node set)
(lambda () sentinel-value))
sentinel-value)))
(define (set-empty? set)
(null? (get-node set)))
(define (set-disjoint? set1 set2)
#;(set-empty? (set-intersection set1 set2))
;; More optimized version.
;;
;; List the values of the sets in order. If any set is exhausted, then
;; the sets are disjoint. If any element is equal, then the sets are
;; not disjoint.
;;
;; If the element from set 1 is less than the element from set 2, then
;; get the next element from set 1 (if any) and repeat. Since the
;; elements are obtained in order, any elements after the current
;; element of set 2 must be greater than the seen elements from set 1.
(let ((gen1 (set->in-order-generator set1))
(gen2 (set->in-order-generator set2))
(cmp (check-compatible set1 set2)))
(let loop ((value1 (gen1))
(value2 (gen2)))
(if (or (eof-object? value1) (eof-object? value2))
#t
(comparator-if<=> cmp value1 value2
(loop (gen1) value2)
#f
(loop value1 (gen2)))))))
;;; ;;;;;;;;;;;;;;;;;;;
;;; Accessors
;;; ;;;;;;;;;;;;;;;;;;;
(define (set-member set element default)
(search (set-element-comparator set)
element
(get-node set)
(lambda () default)))
;;; ;;;;;;;;;;;;;;;;;;;
;;; Updaters
;;; ;;;;;;;;;;;;;;;;;;;
(define (set-adjoin set . elements)
(set-adjoin-all set elements))
(define set-adjoin! set-adjoin)
(define (set-replace set . elements)
(set-replace-all elements))
(define set-replace! set-replace)
(define (set-delete-all set elements)
(let ((cmp (set-element-comparator set)))
(raw-set
cmp
(fold (lambda (element node)
(delete cmp node element))
(get-node set)
elements))))
(define set-delete-all! set-delete-all)
(define (set-delete set . elements)
(set-delete-all set elements))
(define set-delete! set-delete)
(define (set-search! set element failure success)
;; The SRFI mandates that `failure` and `success` are tail-called.
(define (%insert obj)
(values (set-adjoin set element) obj))
(define (%ignore obj)
(values set obj))
(define (%remove obj)
(values (set-remove set element) obj))
(define (%update new-element obj)
(values (set-replace (set-remove set element) new-element)
obj))
(let ((value (set-member set element (eof-object))))
(if (eof-object? value)
(failure %insert %ignore)
(success value %update %remove))))
(define (set-size set) (get-size (get-node set)))
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The whole set
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define set-find
(case-lambda
((predicate set default-value)
(set-find predicate set default-value (lambda (x) x)))
((predicate set default-value transform)
(let loop ((queue (list (get-node set))))
(cond
((null? queue) (default-value))
((null? (car queue)) (loop (cdr queue)))
(else (with-node ((car queue) data ("<" left) (">" right))
(if (predicate data)
(transform data)
(loop (cons* left right (cdr queue)))))))))))
(define (set-count predicate set)
(define (count node)
(if (null? node)
0
(+ (if (predicate (get-data node)) 1 0)
(count (get-left node))
(count (get-right node)))))
(count (get-node set)))
(define (set-any? predicate set)
(set-find predicate set (lambda () #f) (lambda (x) #t)))
(define (set-every? predicate set)
(set-find (lambda (x) (not (predicate x)))
set
(lambda () #t)
(lambda (x) #f)))
;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; Mapping and folding
;;; ;;;;;;;;;;;;;;;;;;;;;;;;
(define (set-map comparator proc old-set)
(let ((cmp (set-element-comparator old-set)))
(raw-set cmp
(set-fold (lambda (value new-node)
(insert cmp new-node (proc value)))
'()
old-set))))
(define (set-for-each proc set)
(let loop ((node (get-node set)))
(when (not (null? node))
(proc (get-data node))
(loop (get-left node))
(loop (get-right node)))))
(define (set-fold proc nil set)
(define (node-fold nil node)
(if (null? node)
nil
(with-node (node data ("<" left) (">" right))
(let ((nil (proc data nil)))
(node-fold (node-fold nil left) right)))))
(node-fold nil (get-node set)))
(define (set-filter predicate? set)
(define (loop node)
(if (null? node)
'()
(with-node (node data ("<" left) (">" right))
(if (predicate? data)
(join data (loop left) (loop right))
(join2 (loop left) (loop right))))))
(raw-set (set-element-comparator set)
(loop (get-node set))))
(define set-filter! set-filter)
(define (set-remove predicate? set)
(set-filter (lambda (x)
(not (predicate? x)))
set))
(define set-remove! set-remove)
(define (set-partition predicate? set)
(define (loop node)
(if (null? node)
(values '() '())
(with-node (node data ("<" left) (">" right))
(let-values (((yes-left no-left)
(loop left))
((yes-right no-right)
(loop right)))
(if (predicate? data)
(values (join data yes-left yes-right)
(join2 no-left no-right))
(values (join2 yes-left yes-right)
(join data no-left no-right)))))))
(let-values (((yes no) (loop (get-node set)))
((cmp) (set-element-comparator set)))
(values (raw-set cmp yes)
(raw-set cmp no))))
(define set-partition! set-partition)
;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; Copying and conversion
;;; ;;;;;;;;;;;;;;;;;;;;;;
(define (set-copy set)
;; NOTE: This function is useless for this implementation because nodes
;; can never be modified.
set
#;(define (node-copy node)
(if (null? node)
'()
(with-node (node data ("<" left) (">" right))
(wb-tree-node data (node-copy left) (node-copy right)))))
#;(raw-set (get-element-comparator set) (node-copy node)))
(define (list->set comparator lst)
(let loop ((node '())
(lst lst))
(if (null? lst)
(raw-set comparator node)
(loop (insert comparator node (car lst)) (cdr lst)))))
(define (set->list set)
(set-fold cons '() set))
(define (list->set! set elements)
(set-union set (list->set (set-element-comparator set) elements)))
;;; ;;;;;;;;;;;;;;;;;;;
;;; Subsets
;;; ;;;;;;;;;;;;;;;;;;;
(define (apply-nary-predicate binary)
(lambda (first . rest)
(let loop ((arg1 first)
(arg-rest rest))
(if (null? arg-rest)
#t
(let ((arg2 (car arg-rest)))
(if (binary (check-compatible arg1 arg2) arg1 arg2)
(loop arg2 (cdr arg-rest))
#f))))))
(define set=?
(apply-nary-predicate
(lambda (cmp set1 set2)
(or (eq? set1 set2)
(and (= (set-size set1) (set-size set2))
(let ((gen1 (set->in-order-generator set1))
(gen2 (set->in-order-generator set2)))
(let loop ((value1 (gen1))
(value2 (gen2)))
(cond
((and (eof-object? value1) (eof-object? value2)) #t)
((=? cmp value1 value2) (loop (gen1) (gen2)))
(else #f)))))))))
(define (binary-set<=? cmp set1 set2)
(or (eq? set1 set2)
(and (<= (set-size set1) (set-size set2))
(set-every? (cut set-contains? set2 <>) set1))))
(define set<=?
(apply-nary-predicate binary-set<=?))
(define (binary-set<? cmp set1 set2)
(and (not (eq? set1 set2))
(< (set-size set1) (set-size set2))
(set-every? (cut set-contains? set2 <>) set1)))
(define set<?
(apply-nary-predicate binary-set<?))
(define set>?
(apply-nary-predicate
(lambda (cmp set1 set2) (binary-set<? cmp set2 set1))))
(define set>=?
(apply-nary-predicate
(lambda (cmp set1 set2) (binary-set<=? cmp set2 set1))))
;;; ;;;;;;;;;;;;;;;;
;;; Set theory operations
;;; ;;;;;;;;;;;;;;;;
(define (apply-nary-procedure binary)
(lambda (first . rest)
(let ((cmp (set-element-comparator first)))
(let loop ((arg1 first)
(arg-rest rest))
(if (null? arg-rest)
arg1
(let ((arg2 (car arg-rest)))
(check-compatible arg1 arg2)
(loop (binary cmp arg1 arg2)
(cdr arg-rest))))))))
(define (convert-binary-procedure proc)
(apply-nary-procedure
(lambda (cmp arg1 arg2)
(raw-set cmp (proc cmp (get-node arg1) (get-node arg2))))))
(define set-union (convert-binary-procedure union))
(define set-union! set-union)
(define set-intersection (convert-binary-procedure
(lambda (cmp node1 node2)
(if (eq? node1 node2)
node1
(intersection cmp node1 node2)))))
(define set-intersection! set-intersection)
(define set-difference (convert-binary-procedure difference))
(define set-difference! set-difference)
(define set-xor (apply-nary-procedure xor))
(define set-xor! set-xor)
;;; ;;;;;;;;;;;;
;;; exported extensions
;;; ;;;;;;;;;;;;
(define (set-adjoin-all set elements)
(let ((cmp (set-element-comparator set)))
(raw-set
cmp
(fold (lambda (new set)
(update cmp
set
new
(lambda (old) old)
(lambda () (wb-tree-node new '() '()))))
(get-node set)
elements))))
(define (set-replace-all set elements)
(let ((cmp (set-element-comparator set)))
(fold (lambda (new set)
(update cmp
set
new
(lambda (old) new)
(lambda ()
(wb-tree-node new '() '()))))
(get-node set)
elements)))
(define (generator->set comparator gen)
(raw-set comparator (generator->node comparator gen)))
(define (set->generator set)
(node->generator (get-node set)))
(define (set->in-order-generator set)
(node->in-order-generator (get-node set)))
(define (set->reverse-order-generator set)
(node->reverse-order-generator (get-node set)))
(define (in-order->set comparator container ref length)
(raw-set comparator
(in-order-container->node container ref length)))
(define (binary-compatible s1 s2)
(let ((cmp (set-element-comparator s1)))
(and (eq? cmp (set-element-comparator s2))
cmp)))
(define compatible-sets?
(apply-nary-predicate (lambda (cut set1 set2)
(binary-compatible set1 set2))))
|