aboutsummaryrefslogtreecommitdiffstats
path: root/tests/srfi-113-sets.scm
blob: 963ded3c1e870af4f0d139d53a4e717f810280f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
#| Copyright 2024 Peter McGoron
 |
 | Licensed under the Apache License, Version 2.0 (the "License");
 | you may not use this file except in compliance with the License.
 | You may obtain a copy of the License at
 |
 |     http://www.apache.org/licenses/LICENSE-2.0
 |
 | Unless required by applicable law or agreed to in writing, software
 | distributed under the License is distributed on an "AS IS" BASIS,
 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | See the License for the specific language governing permissions and
 | limitations under the License.
 |#

(define test-constructor #f)
(define test-set-generator-of #f)
(define test-intersecting-set-generator-of #f)
(define test-disjoint-set-generator-of #f)
(define test-set-contains #f)
(define test-set-disjoint #f)
(define test-set-member #f)
(define test-set-adjoin #f)
(define test-set-replace #f)
(define test-set-delete #t)
(define test-set-delete-all #t)

(define test-set-find #t)
(define test-set-union #t)
(define test-set-difference #t)
(define test-set-every #f)
(define test-set= #f)
(define test-set<= #f)
(define test-set< #f)
(define test-set>= #f)
(define test-set> #f)

(define cmp
  ;; The global comparator.
  (make-default-comparator))

(define (orderable-generator)
  ;; Return a value that can be ordered in an obvious way.
  ;; 
  ;; NOTE: The default comparator will equate things like `#i0.5` and `1/2`
  ;; or `-0.0` and `0`. This will filter only for exact integers and
  ;; inexact non-integers.
  (gfilter (lambda (x)
             (if (number? x)
                 (cond
                   ((and (inexact? x) (integer? x)) #f)
                   ((nan? x) #f)
                   (else #t))
                 #t))
           (gsampling (boolean-generator)
                      (inexact-real-generator)
                      (exact-integer-generator)
                      (char-generator)
                      (string-generator)
                      (bytevector-generator))))

;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; Utility functions
;;; ;;;;;;;;;;;;;;;;;;;;;;

(define unique-list
  (case-lambda
    (() (unique-list 100))
    ((num)
     ;; Return a list of unique elements (according to the equality
     ;; predicate of the global comparator).
     (gmap (lambda (lst)
             (let loop ((list-set '())
                        (lst lst))
               (cond
                 ((null? lst) list-set)
                 ((member (car lst) list-set (cut =? cmp <> <>))
                  (loop list-set (cdr lst)))
                 (else (loop (cons (car lst) list-set) (cdr lst))))))
           (list-generator-of (orderable-generator) num)))))

(define (find-some-element s1)
  ;; Get some arbitrary element from the set.
  ;; 
  ;; Note that despite being arbitrary, this procedure is deterministic:
  ;; when applied to the same set it will return the same results.
  (set-find (lambda (x) #t) s1 (lambda () (error "s1 is empty" s1))))

(define (delete-some-element s1)
  ;; Delete an arbitrary element from the set.
  (let ((element (find-some-element s1)))
    (values (set-delete s1 element) element)))

(define (%set . elements)
  ;; Create a set with the `cmp` comparator.
  (apply set cmp elements))

;;; ;;;;;;;;;;;;;;;;;;;;
;;; Tests
;;; 
;;; The first part of these tests assume that `lset=` from SRFI-1 works
;;; properly.
;;; ;;;;;;;;;;;;;;;;;;;;

(test-group "set-empty?"
  (test-assert "empty" (set-empty? (%set)))
  (test-assert "not empty 1" (not (set-empty? (%set 0))))
  (test-assert "not empty 2" (not (set-empty? (%set 0 1))))
  (test-assert "not empty 3" (not (set-empty? (%set 0 1 2))))
  (test-assert "not empty 4" (not (set-empty? (%set 0 1 2 3)))))

(test-group "lengths"
  (test-assert "0" (= 0 (set-size (%set))))
  (test-assert "1" (= 1 (set-size (%set 0))))
  (test-assert "2" (= 2 (set-size (%set 0 1))))
  (test-assert "3" (= 3 (set-size (%set 0 1 2))))
  (test-assert "4" (= 4 (set-size (%set 0 1 2 3)))))

(test-group "set->list"
  (test-assert "empty" (eq? '() (set->list (%set))))
  (test-assert "1" (lset= = '(1) (set->list (%set 1))))
  (test-assert "2" (lset= = '(1 2) (set->list (%set 1 2))))
  (test-assert "3" (lset= = '(0 1 2) (set->list (%set 0 1 2))))
  (test-assert "4" (lset= = '(0 1 2 3) (set->list (%set 0 1 2 3)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Constructor tests.
;;; 
;;; The constructor tests will test the three set constructors,
;;; `list->set`, `set`, and `set-unfold`. These in the process test
;;; `set->list`.
;;; 
;;; The SRFI does not specify what elements will be preserved in the set
;;; when the constructors run, if they compare equal according to the
;;; comparator.
;;; 
;;; There are two types of tests: tests for creation from unique vectors
;;; and from possibly non-unique vectors.

(when test-constructor
  (test-group "constructors"
    (define (test-create-with-duplicates creator)
      (lambda (lst)
        (let* ((new-set (creator lst))
               (set-as-list (set->list new-set)))
          (test-assert "set?" (set? new-set))
          (if (null? lst)
              (test-assert "empty?" (set-empty? new-set))
              (test-assert "empty?" (not (set-empty? new-set))))
          ;; The new-set will remove duplicates.
          (test-call "length?" (<= (set-size new-set) (length lst)))
          (test-call "subset of inserted" (lset<= equal? set-as-list lst)))))
    (define (test-create-without-duplicates creator)
      (lambda (lst)
        (let* ((new-set (creator lst))
               (set-as-list (set->list new-set)))
          (test-assert "set?" (set? new-set))
          (test-assert "empty?" (if (null? lst)
                                    (set-empty? new-set)
                                    (not (set-empty? new-set))))
          (test-equal "length?" (set-size new-set) (length lst))
          (test-call "exactly inserted" (lset= equal? set-as-list lst)))))
    (test-group "multiple element set using `list->set` procedure"
      (test-property (test-create-with-duplicates
                      (cute list->set cmp <>))
                     (list (unique-list))))
    (test-group "multiple element set using `set` procedure"
      (test-property (test-create-with-duplicates
                      (cute apply set cmp <...>))
                     (list (unique-list))))
    (test-group "multiple element set using `set-unfold` procedure"
      (test-property (test-create-with-duplicates
                      (cute set-unfold cmp null? car cdr <>))
                     (list (unique-list))))
    (test-group "multiple element set using `list->set` procedure, unique elements"
      (test-property (test-create-without-duplicates
                      (cute list->set cmp <>))
                     (list (unique-list))))
    (test-group "multiple element set using `set` procedure, unique elements"
      (test-property (test-create-without-duplicates
                      (cute apply set cmp <...>))
                     (list (unique-list))))
    (test-group "multiple element set using `set-unfold` procedure, unique elements"
      (test-property (test-create-without-duplicates
                      (cute set-unfold cmp null? car cdr <>))
                     (list (unique-list))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set generators
;;; 
;;; These generators are defined in terms of other set operations. Although
;;; it is possible to test operations of the set without these, these make
;;; the tests significantly easier to read.
;;; 
;;; `set-generator-of` only depends on `list->set`.

(when test-set-generator-of
  (test-group "set-generator-of"
    (test-group "generates sets"
      (test-property set? (list (set-generator-of (orderable-generator)))))
    (test-group "generates set with a comparator"
      (test-property (lambda (set)
                       (eq? (set-element-comparator set) cmp))
                     (list (set-generator-of cmp (orderable-generator)))))
    (test-group "generates set of a max size"
      (test-property (lambda (set)
                       (<= (set-size set) 10))
                     (list (set-generator-of cmp
                                             (orderable-generator)
                                             10))))))

(define (set-generator)
  ;; Generate a set with the global comparator.
  (set-generator-of cmp (orderable-generator)))

(define (mutually-non-disjoint sets)
  (every (lambda (set1)
           (every (lambda (set2)
                    (not (null? (lset-intersection
                                 (cut =? cmp <...>)
                                 (set->list set1)
                                 (set->list set2)))))
                  sets))
         sets))

;;; ;;;;;;;;;;;;;;;;;;;;;
;;; Advanced set generators
;;; 
;;; Although these generators are implemented in terms of other set
;;; procedures, the tests here are not.
;;; ;;;;;;;;;;;;;;;;;;;;;;

(define (mutually-disjoint sets)
  (every (lambda (set1)
           (every (lambda (set2)
                    (if (eq? set1 set2)
                        #t
                        (null? (lset-intersection
                                (cut =? cmp <...>)
                                (set->list set1)
                                (set->list set2)))))
                  sets))
         sets))

(when test-intersecting-set-generator-of
  (test-group "intersecting-set-generator-of-exactly"
    (test-group "generates a list of sets of a certain length"
      (define (test list-of-sets)
        (and (= (length list-of-sets) 2)
             (every set? list-of-sets)))
      (test-property test
                     (list (intersecting-set-generator-of-exactly
                            (set-generator)
                            2))))
    (test-group "generates non-disjoint sets"
      (test-property mutually-non-disjoint
                     (list (intersecting-set-generator-of-exactly
                            (set-generator)
                            2)))))
  (test-group "intersecting-set-generator-of"
    (test-group "generates lists of sets"
      (define (test list-of-sets)
        (and (<= (length list-of-sets) 10)
             (every set? list-of-sets)))
      (test-property test
                     (list (intersecting-set-generator-of
                            (set-generator)
                            10))))
    (test-group "generates non-disjoint sets"
      (test-property mutually-non-disjoint
                     (list (intersecting-set-generator-of
                            (set-generator)
                            10))))))

(when test-disjoint-set-generator-of
  (test-group "disjoint-set-generator-of-exactly"
    (test-group "generates a list of sets of a certain length"
      (define (test list-of-sets)
        (and (= (length list-of-sets) 2)
             (every set? list-of-sets)))
      (test-property test
                     (list (disjoint-set-generator-of-exactly
                            (set-generator)
                            2))))
    (test-group "generates -disjoint sets"
      (test-property mutually-disjoint
                     (list (disjoint-set-generator-of-exactly
                            (set-generator)
                            2)))))
  (test-group "disjoint-set-generator-of generates lists of sets"
    (define (test list-of-sets)
      (and (<= (length list-of-sets) 10)
           (every set? list-of-sets)))
    (test-property test
                   (list (disjoint-set-generator-of
                          (set-generator)
                          10))))
  (test-group "disjoint-set-generator-of generates mutually disjoint sets"
    (test-property mutually-disjoint
                   (list (disjoint-set-generator-of
                          (set-generator)
                          10)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-contains
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-contains
  (test-group "set-contains"
    (test-group "set-contains every element from list->set"
      (define (set-contains-from lst)
        (let ((set (list->set cmp lst)))
          (every (cut set-contains? set <>) lst)))
      (test-property set-contains-from (list (list-generator-of
                                              (orderable-generator)))))
    (test-group "set-contains every element from set-every?"
      (define (set-contains-every set)
        (set-every? (cut set-contains? set <>) set))
      (test-property set-contains-every (list (set-generator))))
    (test-group "set-contains? is false for elements in disjoint set"
      (define (set-does-not-contain sets)
        (define (set-does-not-contain? set value)
          (not (set-contains? set value)))
        (set-every? (cute set-does-not-contain?
                          (list-ref sets 1)
                          <>)
                    (list-ref sets 0)))
      (test-property set-does-not-contain (list (disjoint-set-generator-of-exactly
                                                 (set-generator)
                                                 2))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-disjoint?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-disjoint
  (test-group "set-disjoint?"
    (define (set-not-disjoint? s1 s2)
      (not (set-disjoint? s1 s2)))
    (test-group "sets from parts of unique list are disjoint"
      (define (sets-from-unique-list lst)
        (let-values (((l1 l2) (split-at! lst (floor (/ (length lst) 2)))))
          (let ((set1 (list->set cmp l1))
                (set2 (list->set cmp l2)))
            (set-disjoint? set1 set2))))
      (test-property sets-from-unique-list (list (gremove null? (unique-list)))))
    (test-group "sets from parts of unique list with shared elements are not disjoint"
      (define (sets-from-unique-list lst)
        (let*-values (((el) (car lst))
                      ((lst) (cdr lst))
                      ((l1 l2) (split-at! lst (floor (/ (length lst) 2))))
                      ((set1) (list->set cmp (cons el l1)))
                      ((set2) (list->set cmp (cons el l2))))
          (not (set-disjoint? set1 set2))))
      (test-property sets-from-unique-list (list (gremove null? (unique-list)))))
    (test-group "non-empty sets are not disjoint from themselves"
      (define (self-never-disjoint s)
        (if (set-empty? s)
            #t
            (set-not-disjoint? s s)))
      (test-property self-never-disjoint (list (set-generator))))
    (test-group "empty set is disjoint from every set"
      (define (disjoint-to-empty s)
        (and (set-disjoint? s (set cmp))
             (set-disjoint? (set cmp) s)))
      (test-property disjoint-to-empty (list (set-generator))))
    (test-group "disjoint sets from disjoint-set-generator-of"
      (define (set-disjoint-all lst)
        (every (lambda (set1)
                 (every (lambda (set2)
                          (or (eq? set1 set2)
                              (set-disjoint? set1 set2)))
                        lst))
               lst))
      (test-property set-disjoint-all
                     (list (disjoint-set-generator-of
                            (set-generator)
                            10))))
    (test-group "non disjoint sets from intersecting-set-generator-of"
      (define (not-set-disjoint-all lst)
        (every (lambda (set1)
                 (every (lambda (set2)
                          (or (eq? set1 set2)
                              (not (set-disjoint? set1 set2))))
                        lst))
               lst))
      (test-property not-set-disjoint-all
                     (list (intersecting-set-generator-of
                            (set-generator)
                            10))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-member
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-member->boolean set el)
  (let ((res (set-member set el set-member->boolean)))
    (not (eq? res set-member->boolean))))

(when test-set-member
  (test-group "set-member"
    (test-group "no element is set-member of empty set"
      (define (not-member-of-empty el)
        (not (set-member->boolean (%set) el)))
      (test-property not-member-of-empty
                     (list (orderable-generator))))
    (test-group "list->set set-member"
      (define (list-set-member lst)
        (let ((set (list->set cmp lst)))
          (every (cut set-member->boolean set <>) lst)))
      (test-property list-set-member
                     (list (list-generator-of (orderable-generator)))))
    (test-group "elements from set->list are set-member"
      (define (list-set-member set)
        (let ((lst (set->list set)))
          (every (lambda (el) (set-member->boolean set el))
                 lst)))
      (test-property list-set-member
                     (list (set-generator))))
    (test-group "elements that are set-contains? are set-member"
      ;; It's likely that the orderable generator generates things like
      ;; booleans (which are likely to be in a set) and also inexact
      ;; reals (which are highly unlikely to be in the set).
      (define (set-contains-member set el)
        (if (set-contains? set el)
            (set-member->boolean set el)
            (not (set-member->boolean set el))))
      (test-property set-contains-member
                     (list (set-generator) (orderable-generator))))
    (test-group "elements from disjoint set are not set-member"
      (define (list-set-member sets)
        (let ((traversed-set (list-ref sets 0))
              (set (list-ref sets 1)))
          (set-every? (lambda (el-from-traversed)
                        (not (set-member->boolean set el-from-traversed)))
                      traversed-set)))
      (test-property list-set-member
                     (list (disjoint-set-generator-of-exactly
                            (set-generator)
                            2))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-adjoin
;;; 
;;; All procedures with linear-update variants use parameterized tests, i.e.
;;; the same test body runs `set-adjoin` and `set-adjoin!`.
;;; 
;;; This means that all test bodys must copy sets that are modified.
;;; 
;;; Note: my implementation is purely function so `set-copy` is the identity.
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-adjoin-test set-adjoin)
  (test-group "set contains after"
    (define (set-contains-after-adjoin set element)
      (set-contains? (set-adjoin set element) element))
    (test-property set-contains-after-adjoin (list (set-generator)
                                                   (orderable-generator))))
  (test-group "adjoin of each element from list->set does not change the set"
    (define (set-adjoin-list lst)
      (let* ((set (list->set cmp lst))
             (copy (set-copy set)))
        (every (lambda (el)
                 (set! set (set-adjoin set el))
                 (set=? set copy))
               lst)))
    (test-property set-adjoin-list (list (unique-list 10))))
  (test-group "adjoin of element not in list changes set"
    (define (set-adjoin-list lst)
      (let-values (((l1 l2) (split-at! lst (floor (/ (length lst) 2)))))
        (let* ((set (list->set cmp l1))
               (copy (set-copy set)))
          (every (lambda (el)
                   (let ((old-size (set-size set)))
                     (set! set (set-adjoin set el))
                     (and (set<? copy set)
                          (set-contains? set el)
                          (= (set-size set) (+ old-size 1)))))
                 l2))))
    (test-property set-adjoin-list (list (gremove null? (unique-list)))))
  (test-group "adjoin of new element increases size by exactly 1"
    (define (set-adjoin-increases set element)
      (let ((old-size (set-size set))
            (new-set (set-adjoin set (cons element element))))
        (= (set-size new-set) (+ old-size 1))))
    (test-property set-adjoin-increases (list (set-generator)
                                              (orderable-generator))))
  (test-group "adjoin of new element is idempotent"
    (define (set-adjoin-increases set element)
      (let* ((old-size (set-size set))
             (element (cons element element))
             (new-set (set-adjoin set element element element element)))
        (= (set-size new-set) (+ old-size 1))))
    (test-property set-adjoin-increases (list (set-generator)
                                              (orderable-generator))))
  (test-group "adjoin of arbitrary element increases size by at most one"
    (define (set-adjoin-increases set element)
      (let* ((old-size (set-size set))
             (new-set (set-adjoin set element element element element element)))
        (and (not (negative? (- (set-size new-set) old-size)))
             (<= (- (set-size new-set) old-size) 1))))
    (test-property set-adjoin-increases (list (set-generator)
                                              (orderable-generator))))
  (test-group "adjoin returns the old element"
    (define (set-returns-old set element)
      ;; Cons cells are not a part of `orderable-generator`.
      (let* ((el1 (cons element element))
             (el2 (cons element element))
             (set (set-adjoin set el1))
             (set (set-adjoin set el2)))
        (and (eq? (set-member set el2 (lambda () set)) el1)
             (eq? (set-member set el1 (lambda () set)) el1))))
    (test-property set-returns-old (list (set-generator)
                                         (orderable-generator)))))

(when test-set-adjoin
  (test-group "set-adjoin"
    (set-adjoin-test set-adjoin))
  (test-group "set-adjoin!"
    (set-adjoin-test set-adjoin!)))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-replace
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-replace-test set-replace)
  ;; TODO: test with lists?
  (test-group "never changes the size of a set"
    (define (set-replace-size set el)
      (let ((old-size (set-size set)))
        (= (set-size set) (set-size (set-replace set el)))))
    (test-property set-replace-size (list (set-generator)
                                          (orderable-generator))))
  (test-group "does not affect a set that does not have the element"
    (define (set-replace-does-not-affect set el)
      ;; Be careful here to copy the set, because this parameterized test
      ;; also tests `set-replace!`.
      (let* ((copy (set-copy set))
             (new-set (set-replace set (cons el el))))
        (set=? copy new-set)))
    (test-property set-replace-does-not-affect (list (set-generator)
                                                     (orderable-generator))))
  (test-group "returns the new element"
    (define (set-returns-new set element)
      ;; Cons cells are not a part of `orderable-generator`.
      (let* ((el1 (cons element element))
             (el2 (cons element element))
             (set (set-adjoin set el1))
             (set (set-replace set el2)))
        (and (eq? (set-member set el1 set) el2)
             (eq? (set-member set el2 set) el2))))
    (test-property set-returns-new (list (set-generator)
                                         (orderable-generator)))))

(when test-set-replace
  (test-group "set-replace"
    (set-replace-test set-replace))
  (test-group "set-replace!"
    (set-replace-test set-replace!)))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-delete
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-delete-test set-delete)
  (test-group "from empty set is always empty"
    (define (delete-from-empty element)
      (set-empty? (set-delete (%set) element)))
    (test-property delete-from-empty (list (orderable-generator))))
  (test-group "from singleton set is empty"
    (define (delete-from-singleton element)
      (set-empty? (set-delete (%set element) element)))
    (test-property delete-from-singleton (list (orderable-generator))))
  (test-group "delete of elements in list"
    (define (delete-from-elements lst)
      (let* ((set (list->set cmp lst))
             (copy (set-copy set)))
        (let loop ((lst lst)
                   (set set))
          (if (null? lst)
              #t
              (let ((set (set-delete set (car lst))))
                (and (every (cut set-contains? set <>) (cdr lst))
                     (set<? set copy)
                     (loop (cdr lst) set)))))))
    (test-property delete-from-elements (list (unique-list))))
  (test-group "of element not in set does not change the set"
    (define (delete-not-in set element)
      (let ((copy (set-copy set))
            (new-set (set-delete set (cons element element))))
        (set=? new-set copy)))
    (test-property delete-not-in (list (set-generator)
                                       (orderable-generator))))
  (test-group "of element from set keeps the rest"
    (define (delete-element-from-set set)
      (let*-values (((copy) (set-copy set))
                    ((set- some-element) (delete-some-element set)))
        (and (not (set-contains? set- some-element))
             (set<? set- copy)
             (= (set-size set-) (- (set-size copy) 1)))))
    (test-property delete-element-from-set
                   (list (gremove set-empty? (set-generator)))))
  (test-group "separate deletes are idempotent"
    (define (delete-idempotent set)
      (let*-values (((set- el) (delete-some-element set))
                    ((set-*) (set-delete set- el)))
        (set=? set-* set-)))
    (test-property delete-idempotent
                   (list (gremove set-empty? (set-generator)))))
  (test-group "deletes in the same line are idempotent"
    (define (delete-same-idem set)
      (let*-values (((set- el) (delete-some-element set))
                    ((set-*) (set-delete set el el el el el)))
        (set=? set- set-*)))
    (test-property delete-same-idem
                   (list (gremove set-empty? (set-generator)))))
  (test-group "delete of multiple elements from set"
    (define (delete-multiple set)
      (let*-values (((copy) (set-copy set))
                    ((set1 el1) (delete-some-element set))
                    ((set2 el2) (delete-some-element set1))
                    ((set3 el3) (delete-some-element set2)))
        (set=? set3 (set-delete copy el1 el2 el3))))
    (test-property delete-multiple
                   (list (gfilter (lambda (set)
                                    (> (set-size set) 3))
                                  (set-generator))))))

(when test-set-delete
  (test-group "set-delete"
    (set-delete-test set-delete))
  (test-group "set-delete!"
    (set-delete-test set-delete!)))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-delete-all
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-delete-all-test set-delete-all)
  (test-group "delete-all equivalent to delete"
    (define (equivalent set elements)
      ;; This is the regular persistent `set-delete`.
      (let* ((delete (apply set-delete set elements)))
        (set=? (set-delete-all set elements) delete)))
    (test-property equivalent (list (set-generator)
                                    (list-generator-of
                                     (orderable-generator)
                                     64)))))

(when test-set-delete-all
  (test-group "set-delete-all"
    (set-delete-all-test set-delete-all))
  (test-group "set-delete-all!"
    (set-delete-all-test set-delete-all!)))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-find
;;; 
;;; Lots of tests use `set-find` to grab an arbitrary element from the
;;; set, so if a lot of tests are failing and you don't know why, it might
;;; be because your implementation of `set-find` is buggy.
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-find
  (test-equal "set-find on empty set always return false"
              #f
              (set-find (lambda (x) #t) (set cmp) (lambda () #f)))
  (test-group "set-find on non-empty set can return something"
    (define (set-find-something set)
      (not
       (eq? (set-find (lambda (x) #t) set (lambda () set-find-something))
            set-find-something)))
    (test-property set-find-something (list (gremove set-empty?
                                                     (set-generator)))))
  (test-group "set-find finds an element from list->set"
    (define (set-find-something set)
      (member (find-some-element set) (set->list set) (cut =? cmp <...>)))
    (test-property set-find-something
                   (list (gremove set-empty? (set-generator)))))
  (test-group "set-find returns an element that is set-contains?"
    (define (set-contains-something set)
      (set-contains? set (find-some-element set)))
    (test-property set-contains-something
                   (list (gremove set-empty? (set-generator)))))
  (test-group "set-find returns an element that is set-member"
    (define (set-member-something set)
      (let ((el (find-some-element set)))
        (not (eq? (set-member set el (lambda () find-some-element))
                  find-some-element)))
      (test-property set-member-something
                     (list (gremove set-empty? (set-generator)))))))


;;; ;;;;;;;;;;;;;;;;;;;;;
;;; set-every
;;; ;;;;;;;;;;;;;;;;;;;;;

(define (less-than-10 x) (< x 10))

(when test-set-every
  (test-group "set-every less than 10"
    (test-property (cut set-every? less-than-10 <>)
                   (list
                    (set-generator-of (gfilter
                                       less-than-10
                                       (exact-integer-generator))))))
  (test-group "set-every less than 10, another element added"
    (define (not-less-than-10 set)
      (let ((set (set-adjoin set 100)))
        (not (set-every? less-than-10 set))))
    (test-property not-less-than-10
                   (list
                    (set-generator-of cmp
                                      (gfilter
                                       less-than-10
                                       (exact-integer-generator))
                                      20)))))
#|

;;; ;;;;;;;;;
;;; set=?
;;; ;;;;;;;;;

(define (shuffle-list lst)
  (define (shuffle-vector! vec)
    (let ((len (vector-length vec)))
      (do ((i 0 (+ i 1)))
          ((= i len) vec)
        (let* ((r (random-integer len))
             (tmp (vector-ref vec r)))
          (vector-set! vec r (vector-ref vec i))
          (vector-set! vec i tmp)))))
  (vector->list (shuffle-vector! (list->vector lst))))

(when test-set=
  (test-group "sets are set= to themselves"
    (define (always-set= set)
      (set=? set set))
    (test-property always-set= (list (set-generator))))
  (test-group "sets are set= to shuffled versions of themselves"
    (define (shuffle-set= lst)
      (let* ((set1 (list->set lst))
             (set2 (list->set (shuffle-vector! lst))))
        (set=? set1 set2)))
    (test-property shuffle-set= (list (unique-list))))
  (test-group "nary set="
    (define (nary-set= lst)
      ;; NOTE: There is no way, as far as I know, to make sets that have
      ;; the same of elements but are structurally different. This tries
      ;; to do that by shuffling a list of elements.
      (let* ((set1 (vector->set lst))
             (set2 (vector->set (shuffle-list lst)))
             (set3 (vector->set (shuffle-list lst)))
             (set4 (vector->set (shuffle-list lst)))
             (set5 (vector->set (shuffle-list lst))))
        (set=? set1 set2 set3 set4 set5)))
    (test-property nary-set= (list (unique-list))))
  (test-group "set with one element deleted is not set="
    (define (not-set=? set)
      (let ((set- (set-delete set (find-some-element set))))
        (and (not (set=? set set-))
             (not (set=? set- set)))))
    (test-property not-set=? (list (gremove set-empty? (set-generator)))))
  (test-group "two unique sets are not set="
    (define (unique-not-set= lst)
      (let-values (((s1 s2)
                    (make-sets-with-shared-and-disjoint lst '())))
        (if (and (set-empty? s1) (set-empty? s2))
            #t
            (and (not (set=? set1 set2))
                 (not (set=? set2 set1))))))
    (test-property (call/split unique-not-set=)
                   (list (unique-vector))))
  (test-group "adding an element to a set makes it not set="
    (define (adjoin-not-set= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (and (not (set=? set set+))
             (not (set=? set+ set)))))
    (test-property adjoin-not-set= (list (set-generator)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;; set-union
;;; ;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-union
  (test-assert "union of two empty sets is empty"
               (set-empty? (set-union (%set) (%set))))
  (test-group "union of set with empty set is the same set"
    (test-property (lambda (set) (set=? set (set-union (%set) set)))
                   (list (set-generator))))
  (test-group "union is idempotent"
    (test-property (lambda (set) (set=? set (set-union set set)))
                   (list (set-generator))))
  (test-group "union of two sets contains elements of both"
    (test-property (lambda (s1 s2)
                     (let ((combined (set-union s1 s2)))
                       (and (set<=? s1 combined)
                            (set<=? s2 combined))))
                   (list (set-generator) (set-generator)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-difference
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-difference
  (test-group "difference of set from empty is the same set"
    (define (test set)
      (set=? set (set-difference set (%set))))
    (test-property test (list (set-generator))))
  (test-group "difference of empty from set is empty"
    (define (test set)
      (set-empty? (set-difference (%set) set)))
    (test-property test (list (set-generator))))
  (test-group "difference of set from disjoint set is the same set"
    (define (test lst)
      (let-values (((s1 s2)
                    (make-sets-with-shared-and-disjoint lst '())))
        (and (set=? s1 (set-difference s1 s2))
             (set=? s2 (set-difference s2 s1))))))
  (test-group "difference of set from set with shared elements"
    (define (test lst)
      (let-values (((disjoint1 disjoint2)
              (make-sets-with-shared-and-disjoint (cdr lst) '()))
             ((shared1 shared2)
              (make-sets-with-shared-and-disjoint (cdr lst) (list (car lst)))))
        (and (set=? disjoint1 (set-difference shared1 shared2))
             (set=? disjoint2 (set-difference shared2 shared1)))))
    (test-property test (list (gremove null? (unique-list))))))

;;; ;;;;;;;;;;;;;;;;;;;;
;;; Set-count
;;; ;;;;;;;;;;;;;;;;;;;;

#;(when test-set-count
  (test-group "count traverses the whole set"
    (define (count-identity set)
      (= (set-count exact-integer? set) (set-size set)))
    (test-property count-identity
                   (list (set-generator-of cmp
                                           (exact-integer-generator)))))
  ;; TODO: use sets of different types (like bytevectors and exact
  ;; integers) and check set count after union.
)


;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;





;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set<=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set<=
  (test-group "all sets are <= to themselves"
    (define (self-set<= set)
      (set<=? set set))
    (test-property self-set<= (list (set-generator))))
  (test-group "all sets are <= to permutations of themselves"
    (define (random-set<= vec)
      (let* ((set (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (set<=? set set2))))
  (test-group "deleting an element from a set makes it <="
    (define (delete-set<= set)
      (let ((set- (set-delete set (find-some-element set))))
        (set<=? set- set)))
    (test-property delete-set<= (list (filter-non-empty-sets
                                       (set-generator)))))
  (test-group "adding an element to a set makes it <="
    (define (adjoin-set<= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set<=? set set+)))
    (test-property adjoin-set<= (list (set-generator))))
  (test-group "nary <="
    (define (nary-set<= set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set<=? set--- set-- set- set)))
    (test-property nary-set<= (list
                               (gfilter (lambda (set)
                                          (> (set-size set) 4))
                                        (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set>=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set>=
  (test-group "all sets are >= to themselves"
    (define (self-set>= set)
      (set>=? set set))
    (test-property self-set>= (list (set-generator))))
  (test-group "all sets are >= to permutations of themselves"
    (define (random-set>= vec)
      (let* ((set (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (set>=? set set2))))
  (test-group "deleting an element from a set makes it >="
    (define (delete-set>= set)
      (let ((set- (set-delete set (find-some-element set))))
        (set>=? set set-)))
    (test-property delete-set>= (list (filter-non-empty-sets
                                       (set-generator)))))
  (test-group "adding an element to a set makes it >="
    (define (adjoin-set>= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set>=? set+ set)))
    (test-property adjoin-set>= (list (set-generator))))
  (test-group "nary >="
    (define (nary-set>= set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set>=? set set- set-- set---)))
    (test-property nary-set>= (list
                               (gfilter (lambda (set)
                                          (> (set-size set) 4))
                                        (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; set<?
;;; ;;;;;;;;;;;;;;;;;;;;;;

(when test-set<
  (test-group "no set is < to itself"
    (define (not-set< set)
      (not (set<? set set)))
    (test-property not-set< (list (set-generator))))
  (test-group "no set is < to a permutation of itself"
    (define (random-not-set< vec)
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (not (set<? set1 set2)))))
  (test-group "deleting an element from a set makes it <"
    (define (delete-set< set)
      (let ((set- (set-delete set (find-some-element set))))
        (set<? set- set)))
    (test-property delete-set< (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "adjoining an element to a set makes it <"
    (define (adjoin-set< set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set<? set set+)))
    (test-property adjoin-set< (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "nary <"
    (define (nary-set< set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set<? set--- set-- set- set)))
    (test-property nary-set< (list
                              (gfilter (lambda (set)
                                         (> (set-size set) 4))
                                       (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;; set>?
;;; ;;;;;;;;;;;;;;;;;;;;;;;

(when test-set>
  (test-group "no set is > to itself"
    (define (not-set> set)
      (not (set>? set set)))
    (test-property not-set> (list (set-generator))))
  (test-group "no set is > to a permutation of itself"
    (define (random-not-set> vec)
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (not (set>? set1 set2)))))
  (test-group "deleting an element from a set makes it >"
    (define (delete-set> set)
      (let ((set- (set-delete set (find-some-element set))))
        (set>? set set-)))
    (test-property delete-set> (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "adjoining an element to a set makes it >"
    (define (adjoin-set> set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set>? set+ set)))
    (test-property adjoin-set> (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "nary >"
    (define (nary-set> set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set>? set set- set-- set---)))
    (test-property nary-set> (list
                              (gfilter (lambda (set)
                                         (> (set-size set) 4))
                                       (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-intersection
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-intersection
  (test-group "set-intersection"
    (define (disjoint-implies-empty-intersection set1 set2)
      (let ((i (set-intersection set1 set2)))
        (if (set-disjoint? set1 set2)
            (set-empty? i)
            (not (set-empty? i)))))
    (define (empty-intersection-implies-disjoint set1 set2)
      (let ((i (set-intersection set1 set2)))
        (if (set-empty? i)
            (set-disjoint? set1 set2)
            (not (set-disjoint? set1 set2)))))
    (test-group "disjoint sets have empty intersections"
      (test-property (call/split disjoint-implies-empty-intersection)
                     (list (split-unique-sets))))
    (test-group "non-disjoint sets have non-empty intersections"
      (test-property (call/split disjoint-implies-empty-intersection)
                     (list (split-non-disjoint-sets))))
    (test-group "empty intersections are disjoint"
      (test-property (call/split empty-intersection-implies-disjoint)
                     (list (split-unique-sets))))
    (test-group "non-empty intersections are non-disjoint sets"
      (test-property (call/split empty-intersection-implies-disjoint)
                     (list (split-non-disjoint-sets))))
    (test-group "intersection of self is self"
      (define (intersection-self set)
        (set=? (set-intersection set set) set))
      (test-property intersection-self (list (set-generator))))
    (test-group "intersection is always subset of both sets"
      (define (intersection-subset set1 set2)
        (let ((i (set-intersection set1 set2)))
          (and (set<=? i set1)
               (set<=? i set2))))
      (test-property (call/split intersection-subset)
                     (list (gsampling
                            (split-non-disjoint-sets)
                            (gmap list
                                  (set-generator)
                                  (set-generator))))))))


|#