aboutsummaryrefslogtreecommitdiffstats
path: root/tests/srfi-113-sets.scm
blob: 344f3bd351c7c09bf830c93bd0926b34cbdd6767 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
#| Copyright 2024 Peter McGoron
 |
 | Licensed under the Apache License, Version 2.0 (the "License");
 | you may not use this file except in compliance with the License.
 | You may obtain a copy of the License at
 |
 |     http://www.apache.org/licenses/LICENSE-2.0
 |
 | Unless required by applicable law or agreed to in writing, software
 | distributed under the License is distributed on an "AS IS" BASIS,
 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | See the License for the specific language governing permissions and
 | limitations under the License.
 |#

(define test-constructor #f)
(define test-set-contains #f)
(define test-set-member #f)
(define test-set-adjoin #f)
(define test-set-find #f)
(define test-set-disjoint #f)
(define test-set-every #f)
(define test-set-delete #f)
(define test-set= #f)
(define test-set<= #f)
(define test-set< #f)
(define test-set>= #f)
(define test-set> #f)
(define test-set-intersection #t)

(define cmp (make-default-comparator))

(define (orderable-generator)
  ;; Return a value that can be ordered in an obvious way.
  ;; 
  ;; NOTE: The default comparator will equate things like `#i0.5` and `1/2`
  ;; or `-0.0` and `0`. This will filter only for exact integers and
  ;; inexact non-integers.
  (gfilter (lambda (x)
             (if (number? x)
                 (cond
                   ((and (inexact? x) (integer? x)) #f)
                   ((nan? x) #f)
                   (else #t))
                 #t))
           (gsampling (boolean-generator)
                      (inexact-real-generator)
                      (exact-integer-generator)
                      (char-generator)
                      (string-generator)
                      (bytevector-generator))))

;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; Utility functions
;;; ;;;;;;;;;;;;;;;;;;;;;;

(define (remove-duplicates generator)
  ;; Remove duplicates (according to the default comparator) from vectors
  ;; made by `generator`.
  ;; 
  ;; TODO: This relies on SRFI-69. Just make it depend on SRFI-1 list
  ;; procedures later, since this will only be used for testing constructors.
  (gmap (lambda (vec)
          (let* ((table (make-hash-table (cut =? cmp <> <>) hash-by-identity))
                 (n 0))
            (vector-for-each
             (lambda (value)
               (when (not (hash-table-ref/default table value #f))
                 (hash-table-set! table value #t)
                 (set! n (+ n 1))))
             vec)
            (let ((new-vec (make-vector n))
                  (n 0))
              (hash-table-walk table
                               (lambda (key _)
                                 (vector-set! new-vec n key)
                                 (set! n (+ n 1))))
              new-vec)))
        generator))

(define (unique-vector)
  ;; Return a vector of unique elements (according to the equality
  ;; predicate of the default comparator).
  (remove-duplicates (vector-generator-of (orderable-generator))))

(define (vector->set vec)
  ;; Convert a vector into a set.
  (set-unfold cmp
              (cute = <> (vector-length vec))
              (cut vector-ref vec <>)
              (cut + <> 1)
              0))

(define (filter-non-empty-sets set-generator)
  ;; Filter a generator of sets for non-empty sets.
  (gfilter (lambda (set) (not (set-empty? set)))
           set-generator))

(define (split-vector gen)
  ;; Split vectors in half, return it as a list.
  (gmap (lambda (vec)
          (let* ((len (vector-length vec))
                 (midpoint (floor (/ len 2))))
            (list (vector-copy vec 0 midpoint)
                  (vector-copy vec (+ midpoint 1) len))))
        (gfilter (lambda (vec)
                   (not (zero? (vector-length vec))))
                 gen)))

(define (call/split proc)
  (lambda (vals)
    (let ((v1 (list-ref vals 0))
          (v2 (list-ref vals 1)))
      (proc v1 v2))))

(define (split-unique-vectors)
  ;; Generator of list of two elements, each of which is a vector. The
  ;; vectors are disjoint.
  (split-vector (unique-vector)))

(define (split-unique-sets)
  ;; Generator of a list of two elements, each of which is a set. The
  ;; sets are disjoint.
  (gmap (call/split
         (lambda (v1 v2)
           (list (list->set cmp (vector->list v1))
                 (list->set cmp (vector->list v2)))))
        (split-unique-vectors)))

(define (find-some-element s1)
  ;; Get some arbitrary element from the set.
  ;; 
  ;; Note that despite being arbitrary, this procedure is deterministic:
  ;; when applied to the same set it will return the same results.
  (set-find (lambda (x) #t) s1 (lambda () (error "s1 is empty" s1))))

(define (delete-some-element s1)
  ;; Delete an arbitrary element from the set.
  (let ((element (find-some-element s1)))
    (values (set-delete s1 element) element)))

(define (split-non-disjoint-sets)
  ;; Create a generator which generates list of two elements. The two
  ;; elements are list whose sets are not disjoint: they have exactly
  ;; one element in common.
  (gmap (call/split
         (lambda (s1 s2)
           (let* ((from-s1 (find-some-element s1))
                  (s2 (set-adjoin s2 from-s1)))
             (list s1 s2))))
        (gfilter (call/split
                  (lambda (s1 s2)
                    (and (not (set-empty? s1)) (not (set-empty? s2)))))
                 (split-unique-sets))))

(define
    (%set . elements)
  (apply set cmp elements))

;;; ;;;;;;;;;;;;;;;;;;;;
;;; Tests
;;; 
;;; The first part of these tests assume that `lset=` from SRFI-1 works
;;; properly.
;;; ;;;;;;;;;;;;;;;;;;;;

(test-group "set-empty?"
  (test-assert "empty" (set-empty? (%set)))
  (test-assert "not empty 1" (not (set-empty? (%set 0))))
  (test-assert "not empty 2" (not (set-empty? (%set 0 1))))
  (test-assert "not empty 3" (not (set-empty? (%set 0 1 2))))
  (test-assert "not empty 4" (not (set-empty? (%set 0 1 2 3)))))

(test-group "lengths"
  (test-call "0" (= 0 (set-size (%set))))
  (test-call "1" (= 1 (set-size (%set 0))))
  (test-call "2" (= 2 (set-size (%set 0 1))))
  (test-call "3" (= 3 (set-size (%set 0 1 2))))
  (test-call "4" (= 4 (set-size (%set 0 1 2 3)))))

(test-group "set->list"
  (test-call "empty" (eq? '() (set->list (%set))))
  (test-call "1" (lset= = '(1) (set->list (%set 1))))
  (test-call "2" (lset= = '(1 2) (set->list (%set 1 2))))
  (test-call "3" (lset= = '(0 1 2) (set->list (%set 0 1 2))))
  (test-call "4" (lset= = '(0 1 2 3) (set->list (%set 0 1 2 3)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Constructor tests.
;;; 
;;; The constructor tests will test the three set constructors,
;;; `list->set`, `set`, and `set-unfold`. These in the process test
;;; `set->list`.
;;; 
;;; The SRFI does not specify what elements will be preserved in the set
;;; when the constructors run, if they compare equal according to the
;;; comparator.
;;; 
;;; There are two types of tests: tests for creation from unique vectors
;;; and from possibly non-unique vectors.

(define (test-create-with-duplicates creator)
  (lambda (vec)
    (let* ((lst (vector->list vec))
           (new-set (creator lst))
           (set-as-list (set->list new-set)))
      (test-assert "set?" (set? new-set))
      (if (null? lst)
          (test-assert "empty?" (set-empty? new-set))
          (test-assert "empty?" (not (set-empty? new-set))))
      ;; The new-set will remove duplicates.
      (test-call "length?" (<= (set-size new-set) (length lst)))
      (test-call "subset of inserted" (lset<= equal? set-as-list lst)))))

(when test-constructor
  (test-group "multiple element set using `list->set` procedure"
    (test-property (test-create-with-duplicates
                  (cute list->set cmp <>))
                   (list (unique-vector))))
  (test-group "multiple element set using `set` procedure"
    (test-property (test-create-with-duplicates
                    (cute apply set cmp <...>))
                   (list (unique-vector))))
  (test-group "multiple element set using `set-unfold` procedure"
    (test-property (test-create-with-duplicates
                    (cute set-unfold cmp null? car cdr <>))
                   (list (unique-vector)))))

(define (test-create-without-duplicates creator)
  (lambda (vec)
    (let* ((lst (vector->list vec))
           (new-set (creator lst))
           (set-as-list (set->list new-set)))
      (test-assert "set?" (set? new-set))
      (test-assert "empty?" (if (null? lst)
                                (set-empty? new-set)
                                (not (set-empty? new-set))))
      (test-equal "length?" (set-size new-set) (length lst))
      (test-call "exactly inserted" (lset= equal? set-as-list lst)))))

(when test-constructor
  (test-group "multiple element set using `list->set` procedure, unique elements"
    (test-property (test-create-without-duplicates
                    (cute list->set cmp <>))
                   (list (unique-vector))))
  (test-group "multiple element set using `set` procedure, unique elements"
    (test-property (test-create-without-duplicates
                    (cute apply set cmp <...>))
                   (list (unique-vector))))
  (test-group "multiple element set using `set-unfold` procedure, unique elements"
    (test-property (test-create-without-duplicates
                    (cute set-unfold cmp null? car cdr <>))
                   (list (unique-vector)))))

;;; ;;;;;;;;;;;;;;;;;;;;;
;;; set-every
;;; 
;;; After testing constructors, `set-generator-of` should work. It's
;;; tricky to test itself, since sets combine comparator-equal elements.
;;; The rest of the test assumes that it works.
;;; ;;;;;;;;;;;;;;;;;;;;;

(define (less-than-10 x) (< x 10))

(when test-set-every
  (test-group "set-every less than 10"
    (test-property (cut set-every? less-than-10 <>)
                   (list
                    (set-generator-of (gfilter
                                       less-than-10
                                       (exact-integer-generator))))))
  (test-group "set-every less than 10, another element added"
    (define (not-less-than-10 set)
      (let ((set (set-adjoin set 100)))
        (not (set-every? less-than-10 set))))
    (test-property not-less-than-10
                   (list
                    (set-generator-of cmp
                                      (gfilter
                                       less-than-10
                                       (exact-integer-generator))
                                      20)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-contains
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (set-generator)
  (set-generator-of cmp (orderable-generator)))

(when test-set-contains
  (test-group "set-contains every element from list->set"
    (define (set-contains-from vec)
      (let ((set (vector->set vec)))
        (vector-every (cut set-contains? set <>) vec)))
    (test-property set-contains-from (list (unique-vector))))
  (test-group "set-contains every element from set-every?"
    (define (set-contains-every ste)
      (set-every? (cut set-contains? set <>) set))
    (test-property set-contains-every (list (set-generator))))
  (test-group "set-contains? is false for elements in disjoint set"
    (define (set-does-not-contain vecs)
      (define (set-does-not-contain? set value)
        (not (set-contains? set value)))
      (let ((set (list->set cmp (vector->list (list-ref vecs 0))))
            (not-in (list-ref vecs 1)))
        (vector-every (cut set-does-not-contain? set <>) not-in)))
    (test-property set-does-not-contain (list (split-unique-vectors)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-member
;;; 
;;; Defined in terms of set-every? and set-contains?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-member
  (test-group "set-member"
    (define (set-member-from set)
      (set-every? (lambda (value)
                    (eq?
                     value
                     (set-member set value set-member-from)))
                  set))
    (test-property set-member-from (list (set-generator))))
  (test-group "not set-member"
    (define (set-not-member vecs)
      (let ((set (list->set cmp (vector->list (list-ref vecs 0))))
            (not-in (list-ref vecs 1)))
        (vector-every
         (lambda (value)
           (eq? (set-member set value set-not-member)
                set-not-member))
         not-in)))
    (test-property set-not-member (list (split-unique-vectors)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-adjoin
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-adjoin
  (test-group "set contains after adjoin"
    (define (set-contains-after-adjoin set element)
      (set-contains? (set-adjoin set element) element))
    (test-property set-contains-after-adjoin (list (set-generator)
                                                   (orderable-generator))))
  (test-group "adjoin returns the old element"
    (define (set-returns-old set element)
      (let* ((el1 (cons element element))
             (el2 (cons element element))
             (set (set-adjoin set el1))
             (set (set-adjoin set el2)))
        (eq? (set-member set el2 (lambda () #f)) el1)))
    (test-property set-returns-old (list (set-generator)
                                         (orderable-generator)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-find
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-find
  (test-equal "set-find on empty set always return false"
              #f
              (set-find (lambda (x) #t) (set cmp) (lambda () #f)))
  (test-group "set-find on non-empty set can return something"
    (define (set-find-something set)
      (not
       (eq? (set-find (lambda (x) #t) set (lambda () set-find-something))
            set-find-something)))
    (test-property set-find-something (list (filter-non-empty-sets
                                             (set-generator)))))
  (test-group "set-find a number"
    (define (set-find-a-number set)
      (let ((set (set-adjoin set 0)))
        (number? (set-find number? set (lambda () set-find-a-number)))))
    (test-property set-find-a-number (list (set-generator)))))

;;; ;;;;;;;;;;;;;;;;;;;;
;;; Set-count
;;; ;;;;;;;;;;;;;;;;;;;;

#;(when test-set-count
  (test-group "count traverses the whole set"
    (define (count-identity set)
      (= (set-count exact-integer? set) (set-size set)))
    (test-property count-identity
                   (list (set-generator-of cmp
                                           (exact-integer-generator)))))
  ;; TODO: use sets of different types (like bytevectors and exact
  ;; integers) and check set count after union.
)

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-disjoint?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-disjoint
  (let ()
    (define (set-not-disjoint? s1 s2)
      (not (set-disjoint? s1 s2)))
    (test-group "non-empty sets are not disjoint from themselves"
      (define (self-never-disjoint s)
        (if (set-empty? s)
            #t
            (set-not-disjoint? s s)))
      (test-property self-never-disjoint (list (set-generator))))
    (test-group "empty set is disjoint from every set"
      (define (disjoint-to-empty s)
        (and (set-disjoint? s (set cmp))
             (set-disjoint? (set cmp) s)))
      (test-property disjoint-to-empty (list (set-generator))))
    (test-group "sets from unique vectors are disjoint"
      (define (unique-disjoint s1 s2)
        (and (set-disjoint? s1 s2) (set-disjoint? s2 s1)))
      (test-property (call/split unique-disjoint)
                     (list (split-unique-sets))))
    (test-group "including an element from two disjoint sets make them not disjoint"
      (define (include-makes-not-disjoint s1 s2)
        (and (not (set-disjoint? s1 s2))
             (not (set-disjoint? s2 s1))))
      (test-property (call/split
                      include-makes-not-disjoint)
                     (list (split-non-disjoint-sets))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; set-delete
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-delete
  (test-group "delete from empty set is always empty"
    (define (delete-from-empty element)
      (set-empty? (set-delete (set cmp) element)))
    (test-property delete-from-empty (list (orderable-generator))))
  (test-group "delete from singleton set is empty"
    (define (delete-from-singleton element)
      (set-empty? (set-delete (set cmp element) element)))
    (test-property delete-from-singleton (list (orderable-generator))))
  (test-group "delete of element from set keeps the rest"
    (define (delete-some-element set)
      (let* ((some-element (find-some-element set))
             (set* (set-delete set some-element)))
        (and (not (set-contains? set* some-element))
             (set-every? (cut set-contains? set <>) set*))))
    (test-property delete-some-element
                   (list (filter-non-empty-sets
                          (set-generator)))))
  (test-group "separate deletes are idempotent"
    (define (delete-idempotent set)
      (let-values (((new-set el) (delete-some-element set)))
        (set=? (set-delete new-set el) new-set)))
    (test-property delete-idempotent
                   (list (filter-non-empty-sets
                          (set-generator)))))
  (test-group "deletes in the same line are idempotent"
    (define (delete-same-idem set)
      (let ((el (find-some-element set)))
        (set=? (set-delete set el)
               (set-delete set el el el el el el))))
    (test-property delete-same-idem
                   (list (filter-non-empty-sets
                          (set-generator)))))
  (test-group "delete of multiple elements from set"
    (define (delete-multiple set)
      (let*-values (((set1 el1) (delete-some-element set))
                    ((set2 el2) (delete-some-element set1))
                    ((set3 el3) (delete-some-element set2)))
        (set=? set3 (set-delete set el1 el2 el3))))
    (test-property delete-multiple
                   (list (gfilter (lambda (set)
                                    (> (set-size set) 3))
                                  (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;

(define (shuffle-vector! vec)
  (let ((len (vector-length vec)))
    (do ((i 0 (+ i 1)))
        ((= i len) vec)
      (let* ((r (random-integer len))
             (tmp (vector-ref vec r)))
        (vector-set! vec r (vector-ref vec i))
        (vector-set! vec i tmp)))))

(when test-set=
  (test-group "sets are set= to themselves"
    (define (always-set= set)
      (set=? set set))
    (test-property always-set= (list (set-generator))))
  (test-group "sets are set= to shuffled versions of themselves"
    (define (shuffle-set= vec)
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (set=? set1 set2)))
    (test-property shuffle-set= (list (vector-generator-of
                                       (orderable-generator)))))
  (test-group "nary set="
    (define (nary-set= vec)
      ;; NOTE: There is no way, as far as I know, to make sets that have
      ;; the same of elements but are structurally different. This tries
      ;; to do that by shuffling a list of elements.
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec)))
             (set3 (vector->set (shuffle-vector! vec)))
             (set4 (vector->set (shuffle-vector! vec)))
             (set5 (vector->set (shuffle-vector! vec))))
        (set=? set1 set2 set3 set4 set5)))
    (test-property nary-set= (list (unique-vector))))
  (test-group "set with one element deleted is not set="
    (define (not-set=? set)
      (let ((set* (set-delete set (find-some-element set))))
        (and (not (set=? set set*))
             (not (set=? set* set)))))
    (test-property not-set=? (list (filter-non-empty-sets
                                    (set-generator)))))
  (test-group "two unique sets are not set="
    (define (unique-not-set= set1 set2)
      (if (and (set-empty? set1) (set-empty? set2))
          #t
          (and (not (set=? set1 set2))
               (not (set=? set2 set1)))))
    (test-property (call/split unique-not-set=)
                   (list (split-unique-sets))))
  (test-group "deleting an element from a set makes it not set="
    (define (delete-not-set= set)
      (let ((deleted (set-delete set (find-some-element set))))
        (and (not (set=? set deleted))
             (not (set=? deleted set)))))
    (test-property delete-not-set= (list (filter-non-empty-sets
                                          (set-generator)))))
  (test-group "adding an element to a set makes it not set="
    (define (adjoin-not-set= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (and (not (set=? set set+))
             (not (set=? set+ set)))))
    (test-property adjoin-not-set= (list (set-generator)))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set<=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set<=
  (test-group "all sets are <= to themselves"
    (define (self-set<= set)
      (set<=? set set))
    (test-property self-set<= (list (set-generator))))
  (test-group "all sets are <= to permutations of themselves"
    (define (random-set<= vec)
      (let* ((set (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (set<=? set set2))))
  (test-group "deleting an element from a set makes it <="
    (define (delete-set<= set)
      (let ((set- (set-delete set (find-some-element set))))
        (set<=? set- set)))
    (test-property delete-set<= (list (filter-non-empty-sets
                                       (set-generator)))))
  (test-group "adding an element to a set makes it <="
    (define (adjoin-set<= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set<=? set set+)))
    (test-property adjoin-set<= (list (set-generator))))
  (test-group "nary <="
    (define (nary-set<= set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set<=? set--- set-- set- set)))
    (test-property nary-set<= (list
                               (gfilter (lambda (set)
                                          (> (set-size set) 4))
                                        (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; set>=?
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set>=
  (test-group "all sets are >= to themselves"
    (define (self-set>= set)
      (set>=? set set))
    (test-property self-set>= (list (set-generator))))
  (test-group "all sets are >= to permutations of themselves"
    (define (random-set>= vec)
      (let* ((set (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (set>=? set set2))))
  (test-group "deleting an element from a set makes it >="
    (define (delete-set>= set)
      (let ((set- (set-delete set (find-some-element set))))
        (set>=? set set-)))
    (test-property delete-set>= (list (filter-non-empty-sets
                                       (set-generator)))))
  (test-group "adding an element to a set makes it >="
    (define (adjoin-set>= set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set>=? set+ set)))
    (test-property adjoin-set>= (list (set-generator))))
  (test-group "nary >="
    (define (nary-set>= set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set>=? set set- set-- set---)))
    (test-property nary-set>= (list
                               (gfilter (lambda (set)
                                          (> (set-size set) 4))
                                        (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; set<?
;;; ;;;;;;;;;;;;;;;;;;;;;;

(when test-set<
  (test-group "no set is < to itself"
    (define (not-set< set)
      (not (set<? set set)))
    (test-property not-set< (list (set-generator))))
  (test-group "no set is < to a permutation of itself"
    (define (random-not-set< vec)
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (not (set<? set1 set2)))))
  (test-group "deleting an element from a set makes it <"
    (define (delete-set< set)
      (let ((set- (set-delete set (find-some-element set))))
        (set<? set- set)))
    (test-property delete-set< (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "adjoining an element to a set makes it <"
    (define (adjoin-set< set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set<? set set+)))
    (test-property adjoin-set< (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "nary <"
    (define (nary-set< set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set<? set--- set-- set- set)))
    (test-property nary-set< (list
                              (gfilter (lambda (set)
                                         (> (set-size set) 4))
                                       (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;
;;; set>?
;;; ;;;;;;;;;;;;;;;;;;;;;;;

(when test-set>
  (test-group "no set is > to itself"
    (define (not-set> set)
      (not (set>? set set)))
    (test-property not-set> (list (set-generator))))
  (test-group "no set is > to a permutation of itself"
    (define (random-not-set> vec)
      (let* ((set1 (vector->set vec))
             (set2 (vector->set (shuffle-vector! vec))))
        (not (set>? set1 set2)))))
  (test-group "deleting an element from a set makes it >"
    (define (delete-set> set)
      (let ((set- (set-delete set (find-some-element set))))
        (set>? set- set)))
    (test-property delete-set> (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "adjoining an element to a set makes it >"
    (define (adjoin-set> set)
      (let ((set+ (set-adjoin set (cons #f #f))))
        (set>? set set+)))
    (test-property adjoin-set> (list (filter-non-empty-sets
                                      (set-generator)))))
  (test-group "nary >"
    (define (nary-set> set)
      (let* ((set- (delete-some-element set))
             (set-- (delete-some-element set-))
             (set--- (delete-some-element set--)))
        (set>? set set- set-- set---)))
    (test-property nary-set> (list
                              (gfilter (lambda (set)
                                         (> (set-size set) 4))
                                       (set-generator))))))

;;; ;;;;;;;;;;;;;;;;;;;;;;;;
;;; Set-intersection
;;; ;;;;;;;;;;;;;;;;;;;;;;;;

(when test-set-intersection
  (test-group "set-intersection"
    (define (disjoint-implies-empty-intersection set1 set2)
      (let ((i (set-intersection set1 set2)))
        (if (set-disjoint? set1 set2)
            (set-empty? i)
            (not (set-empty? i)))))
    (define (empty-intersection-implies-disjoint set1 set2)
      (let ((i (set-intersection set1 set2)))
        (if (set-empty? i)
            (set-disjoint? set1 set2)
            (not (set-disjoint? set1 set2)))))
    (test-group "disjoint sets have empty intersections"
      (test-property (call/split disjoint-implies-empty-intersection)
                     (list (split-unique-sets))))
    (test-group "non-disjoint sets have non-empty intersections"
      (test-property (call/split disjoint-implies-empty-intersection)
                     (list (split-non-disjoint-sets))))
    (test-group "empty intersections are disjoint"
      (test-property (call/split empty-intersection-implies-disjoint)
                     (list (split-unique-sets))))
    (test-group "non-empty intersections are non-disjoint sets"
      (test-property (call/split empty-intersection-implies-disjoint)
                     (list (split-non-disjoint-sets))))
    (test-group "intersection of self is self"
      (define (intersection-self set)
        (set=? (set-intersection set set) set))
      (test-property intersection-self (list (set-generator))))
    (test-group "intersection is always subset of both sets"
      (define (intersection-subset set1 set2)
        (let ((i (set-intersection set1 set2)))
          (and (set<=? i set1)
               (set<=? i set2))))
      (test-property (call/split intersection-subset)
                     (list (gsampling
                            (split-non-disjoint-sets)
                            (gmap list
                                  (set-generator)
                                  (set-generator))))))))