diff options
| author | 2023-12-09 10:58:59 -0500 | |
|---|---|---|
| committer | 2023-12-09 10:58:59 -0500 | |
| commit | 647f248d07438df8f5871f0adaf0b5379eba1501 (patch) | |
| tree | 12eaa10f106eb10ae53098dd920c189fa7f1d86b /sha-256.c | |
init
Diffstat (limited to 'sha-256.c')
| -rw-r--r-- | sha-256.c | 226 |
1 files changed, 226 insertions, 0 deletions
diff --git a/sha-256.c b/sha-256.c new file mode 100644 index 0000000..5a69250 --- /dev/null +++ b/sha-256.c @@ -0,0 +1,226 @@ +#include "sha-256.h" + +#define TOTAL_LEN_LEN 8 + +/* + * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here. + * When useful for clarification, portions of the pseudo-code are reproduced here too. + */ + +/* + * @brief Rotate a 32-bit value by a number of bits to the right. + * @param value The value to be rotated. + * @param count The number of bits to rotate by. + * @return The rotated value. + */ +static inline uint32_t right_rot(uint32_t value, unsigned int count) +{ + /* + * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here. + */ + return value >> count | value << (32 - count); +} + +/* + * @brief Update a hash value under calculation with a new chunk of data. + * @param h Pointer to the first hash item, of a total of eight. + * @param p Pointer to the chunk data, which has a standard length. + * + * @note This is the SHA-256 work horse. + */ +static inline void consume_chunk(uint32_t *h, const uint8_t *p) +{ + unsigned i, j; + uint32_t ah[8]; + + /* Initialize working variables to current hash value: */ + for (i = 0; i < 8; i++) + ah[i] = h[i]; + + /* + * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by + * calculating 16 at a time. + * + * This optimization was not there initially and the rest of the comments about w[64] are kept in their + * initial state. + */ + + /* + * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63] + * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the + * message schedule array + */ + uint32_t w[16]; + + /* Compression function main loop: */ + for (i = 0; i < 4; i++) { + for (j = 0; j < 16; j++) { + if (i == 0) { + w[j] = + (uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3]; + p += 4; + } else { + /* Extend the first 16 words into the remaining 48 words w[16..63] of the + * message schedule array: */ + const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^ + (w[(j + 1) & 0xf] >> 3); + const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^ + right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10); + w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1; + } + const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25); + const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]); + + /* + * Initialize array of round constants: + * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): + */ + static const uint32_t k[] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, + 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, + 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, + 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, + 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, + 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, + 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, + 0xc67178f2}; + + const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j]; + const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22); + const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]); + const uint32_t temp2 = s0 + maj; + + ah[7] = ah[6]; + ah[6] = ah[5]; + ah[5] = ah[4]; + ah[4] = ah[3] + temp1; + ah[3] = ah[2]; + ah[2] = ah[1]; + ah[1] = ah[0]; + ah[0] = temp1 + temp2; + } + } + + /* Add the compressed chunk to the current hash value: */ + for (i = 0; i < 8; i++) + h[i] += ah[i]; +} + +/* + * Public functions. See header file for documentation. + */ + +void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH]) +{ + sha_256->hash = hash; + sha_256->chunk_pos = sha_256->chunk; + sha_256->space_left = SIZE_OF_SHA_256_CHUNK; + sha_256->total_len = 0; + /* + * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes + * 2..19): + */ + sha_256->h[0] = 0x6a09e667; + sha_256->h[1] = 0xbb67ae85; + sha_256->h[2] = 0x3c6ef372; + sha_256->h[3] = 0xa54ff53a; + sha_256->h[4] = 0x510e527f; + sha_256->h[5] = 0x9b05688c; + sha_256->h[6] = 0x1f83d9ab; + sha_256->h[7] = 0x5be0cd19; +} + +void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len) +{ + sha_256->total_len += len; + + /* + * The following cast is not necessary, and could even be considered as poor practice. However, it makes this + * file valid C++, which could be a good thing for some use cases. + */ + const uint8_t *p = (const uint8_t *)data; + + while (len > 0) { + /* + * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are + * necessary. We operate directly on the input data instead. + */ + if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) { + consume_chunk(sha_256->h, p); + len -= SIZE_OF_SHA_256_CHUNK; + p += SIZE_OF_SHA_256_CHUNK; + continue; + } + /* General case, no particular optimization. */ + const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left; + memcpy(sha_256->chunk_pos, p, consumed_len); + sha_256->space_left -= consumed_len; + len -= consumed_len; + p += consumed_len; + if (sha_256->space_left == 0) { + consume_chunk(sha_256->h, sha_256->chunk); + sha_256->chunk_pos = sha_256->chunk; + sha_256->space_left = SIZE_OF_SHA_256_CHUNK; + } else { + sha_256->chunk_pos += consumed_len; + } + } +} + +uint8_t *sha_256_close(struct Sha_256 *sha_256) +{ + uint8_t *pos = sha_256->chunk_pos; + size_t space_left = sha_256->space_left; + uint32_t *const h = sha_256->h; + + /* + * The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for + * at least one byte. The next step in the calculation is to add a single one-bit to the data. + */ + *pos++ = 0x80; + --space_left; + + /* + * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before + * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add + * an extra chunk at the end. + */ + if (space_left < TOTAL_LEN_LEN) { + memset(pos, 0x00, space_left); + consume_chunk(h, sha_256->chunk); + pos = sha_256->chunk; + space_left = SIZE_OF_SHA_256_CHUNK; + } + const size_t left = space_left - TOTAL_LEN_LEN; + memset(pos, 0x00, left); + pos += left; + size_t len = sha_256->total_len; + pos[7] = (uint8_t)(len << 3); + len >>= 5; + int i; + for (i = 6; i >= 0; --i) { + pos[i] = (uint8_t)len; + len >>= 8; + } + consume_chunk(h, sha_256->chunk); + /* Produce the final hash value (big-endian): */ + int j; + uint8_t *const hash = sha_256->hash; + for (i = 0, j = 0; i < 8; i++) { + hash[j++] = (uint8_t)(h[i] >> 24); + hash[j++] = (uint8_t)(h[i] >> 16); + hash[j++] = (uint8_t)(h[i] >> 8); + hash[j++] = (uint8_t)h[i]; + } + return sha_256->hash; +} + +void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len) +{ + struct Sha_256 sha_256; + sha_256_init(&sha_256, hash); + sha_256_write(&sha_256, input, len); + (void)sha_256_close(&sha_256); +} |
