Add PmpPluginOld (support TOR)

This commit is contained in:
Dolu1990 2021-09-01 11:27:12 +02:00
parent 5c7e4a0294
commit bc561c30eb

View file

@ -0,0 +1,244 @@
/*
* Copyright (c) 2020 Samuel Lindemer <samuel.lindemer@ri.se>
*
* SPDX-License-Identifier: MIT
*/
package vexriscv.plugin
import vexriscv.{VexRiscv, _}
import spinal.core._
import spinal.lib._
import scala.collection.mutable.ArrayBuffer
/* Each 32-bit pmpcfg# register contains four 8-bit configuration sections.
* These section numbers contain flags which apply to regions defined by the
* corresponding pmpaddr# register.
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | pmp3cfg | pmp2cfg | pmp1cfg | pmp0cfg | pmpcfg0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | pmp7cfg | pmp6cfg | pmp5cfg | pmp4cfg | pmpcfg2
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 7 6 5 4 3 2 1 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | L | 0 | A | X | W | R | pmp#cfg
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* L: locks configuration until system reset (including M-mode)
* 0: hardwired to zero
* A: 0 = OFF (null region / disabled)
* 1 = TOR (top of range)
* 2 = NA4 (naturally aligned four-byte region)
* 3 = NAPOT (naturally aligned power-of-two region, > 7 bytes)
* X: execute
* W: write
* R: read
*
* TOR: Each 32-bit pmpaddr# register defines the upper bound of the pmp region
* right-shifted by two bits. The lower bound of the region is the previous
* pmpaddr# register. In the case of pmpaddr0, the lower bound is address 0x0.
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | address[33:2] | pmpaddr#
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* NAPOT: Each 32-bit pmpaddr# register defines the region address and the size
* of the pmp region. The number of concurrent 1s begging at the LSB indicates
* the size of the region as a power of two (e.g. 0x...0 = 8-byte, 0x...1 =
* 16-byte, 0x...11 = 32-byte, etc.).
*
* 3 2 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | address[33:2] |0|1|1|1|1| pmpaddr#
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* NA4: This is essentially an edge case of NAPOT where the entire pmpaddr#
* register defines a 4-byte wide region.
*/
case class PmpRegister(previous : PmpRegister) extends Area {
def OFF = 0
def TOR = 1
def NA4 = 2
def NAPOT = 3
val state = new Area {
val r, w, x = Reg(Bool)
val l = RegInit(False)
val a = Reg(UInt(2 bits)) init(0)
val addr = Reg(UInt(32 bits))
}
// CSR writes connect to these signals rather than the internal state
// registers. This makes locking and WARL possible.
val csr = new Area {
val r, w, x = Bool
val l = Bool
val a = UInt(2 bits)
val addr = UInt(32 bits)
}
// Last valid assignment wins; nothing happens if a user-initiated write did
// not occur on this clock cycle.
csr.r := state.r
csr.w := state.w
csr.x := state.x
csr.l := state.l
csr.a := state.a
csr.addr := state.addr
// Computed PMP region bounds
val region = new Area {
val valid, locked = Bool
val start, end = UInt(32 bits)
}
when(~state.l) {
state.r := csr.r
state.w := csr.w
state.x := csr.x
state.l := csr.l
state.a := csr.a
state.addr := csr.addr
if (csr.l == True & csr.a == TOR) {
previous.state.l := True
}
}
val shifted = state.addr |<< 2
val mask = state.addr & ~(state.addr + 1)
val masked = (state.addr & ~mask) |<< 2
// PMP changes take effect two clock cycles after the initial CSR write (i.e.,
// settings propagate from csr -> state -> region).
region.locked := state.l
region.valid := True
switch(csr.a) {
is(TOR) {
if (previous == null) region.start := 0
else region.start := previous.region.end
region.end := shifted
}
is(NA4) {
region.start := shifted
region.end := shifted + 4
}
is(NAPOT) {
region.start := masked
region.end := masked + ((mask + 1) |<< 3)
}
default {
region.start := 0
region.end := shifted
region.valid := False
}
}
}
class PmpPluginOld(regions : Int, ioRange : UInt => Bool) extends Plugin[VexRiscv] with MemoryTranslator {
// Each pmpcfg# CSR configures four regions.
assert((regions % 4) == 0)
val pmps = ArrayBuffer[PmpRegister]()
val portsInfo = ArrayBuffer[ProtectedMemoryTranslatorPort]()
override def newTranslationPort(priority : Int, args : Any): MemoryTranslatorBus = {
val port = ProtectedMemoryTranslatorPort(MemoryTranslatorBus(new MemoryTranslatorBusParameter(0, 0)))
portsInfo += port
port.bus
}
override def build(pipeline: VexRiscv): Unit = {
import pipeline.config._
import pipeline._
import Riscv._
val csrService = pipeline.service(classOf[CsrInterface])
val privilegeService = pipeline.service(classOf[PrivilegeService])
val core = pipeline plug new Area {
// Instantiate pmpaddr0 ... pmpaddr# CSRs.
for (i <- 0 until regions) {
if (i == 0) {
pmps += PmpRegister(null)
} else {
pmps += PmpRegister(pmps.last)
}
csrService.r(0x3b0 + i, pmps(i).state.addr)
csrService.w(0x3b0 + i, pmps(i).csr.addr)
}
// Instantiate pmpcfg0 ... pmpcfg# CSRs.
for (i <- 0 until (regions / 4)) {
csrService.r(0x3a0 + i,
31 -> pmps((i * 4) + 3).state.l, 23 -> pmps((i * 4) + 2).state.l,
15 -> pmps((i * 4) + 1).state.l, 7 -> pmps((i * 4) ).state.l,
27 -> pmps((i * 4) + 3).state.a, 26 -> pmps((i * 4) + 3).state.x,
25 -> pmps((i * 4) + 3).state.w, 24 -> pmps((i * 4) + 3).state.r,
19 -> pmps((i * 4) + 2).state.a, 18 -> pmps((i * 4) + 2).state.x,
17 -> pmps((i * 4) + 2).state.w, 16 -> pmps((i * 4) + 2).state.r,
11 -> pmps((i * 4) + 1).state.a, 10 -> pmps((i * 4) + 1).state.x,
9 -> pmps((i * 4) + 1).state.w, 8 -> pmps((i * 4) + 1).state.r,
3 -> pmps((i * 4) ).state.a, 2 -> pmps((i * 4) ).state.x,
1 -> pmps((i * 4) ).state.w, 0 -> pmps((i * 4) ).state.r
)
csrService.w(0x3a0 + i,
31 -> pmps((i * 4) + 3).csr.l, 23 -> pmps((i * 4) + 2).csr.l,
15 -> pmps((i * 4) + 1).csr.l, 7 -> pmps((i * 4) ).csr.l,
27 -> pmps((i * 4) + 3).csr.a, 26 -> pmps((i * 4) + 3).csr.x,
25 -> pmps((i * 4) + 3).csr.w, 24 -> pmps((i * 4) + 3).csr.r,
19 -> pmps((i * 4) + 2).csr.a, 18 -> pmps((i * 4) + 2).csr.x,
17 -> pmps((i * 4) + 2).csr.w, 16 -> pmps((i * 4) + 2).csr.r,
11 -> pmps((i * 4) + 1).csr.a, 10 -> pmps((i * 4) + 1).csr.x,
9 -> pmps((i * 4) + 1).csr.w, 8 -> pmps((i * 4) + 1).csr.r,
3 -> pmps((i * 4) ).csr.a, 2 -> pmps((i * 4) ).csr.x,
1 -> pmps((i * 4) ).csr.w, 0 -> pmps((i * 4) ).csr.r
)
}
// Connect memory ports to PMP logic.
val ports = for ((port, portId) <- portsInfo.zipWithIndex) yield new Area {
val address = port.bus.cmd(0).virtualAddress
port.bus.rsp.physicalAddress := address
// Only the first matching PMP region applies.
val hits = pmps.map(pmp => pmp.region.valid &
pmp.region.start <= address &
pmp.region.end > address &
(pmp.region.locked | ~privilegeService.isMachine()))
// M-mode has full access by default, others have none.
when(CountOne(hits) === 0) {
port.bus.rsp.allowRead := privilegeService.isMachine()
port.bus.rsp.allowWrite := privilegeService.isMachine()
port.bus.rsp.allowExecute := privilegeService.isMachine()
} otherwise {
port.bus.rsp.allowRead := MuxOH(OHMasking.first(hits), pmps.map(_.state.r))
port.bus.rsp.allowWrite := MuxOH(OHMasking.first(hits), pmps.map(_.state.w))
port.bus.rsp.allowExecute := MuxOH(OHMasking.first(hits), pmps.map(_.state.x))
}
port.bus.rsp.isIoAccess := ioRange(port.bus.rsp.physicalAddress)
port.bus.rsp.isPaging := False
port.bus.rsp.exception := False
port.bus.rsp.refilling := False
port.bus.busy := False
}
}
}
}