migen/genlib/cordic.py: generic cordic

* rotating or vectoring cordic modes
* circular, linear, or hyperbolic functions
* combinatorial, pipelined or iterative evaluation
* arbitrary width, stages and guard bits
* two or four quadrant mode for circular/rotate
This commit is contained in:
Robert Jordens 2013-06-25 16:47:51 -06:00 committed by Sebastien Bourdeauducq
parent d0caa738bd
commit 0224ea01cb

251
migen/genlib/cordic.py Normal file
View file

@ -0,0 +1,251 @@
from math import atan, atanh, log, sqrt, pi
from migen.fhdl.std import *
class TwoQuadrantCordic(Module):
"""
http://eprints.soton.ac.uk/267873/1/tcas1_cordic_review.pdf
"""
def __init__(self, width=16, stages=None, guard=0,
eval_mode="iterative", cordic_mode="rotate",
func_mode="circular"):
# validate paramters
assert eval_mode in ("combinatorial", "pipelined", "iterative")
assert cordic_mode in ("rotate", "vector")
self.cordic_mode = cordic_mode
assert func_mode in ("circular", "linear", "hyperbolic")
self.func_mode = func_mode
if guard is None:
# guard bits to guarantee "width" accuracy
guard = int(log(width)/log(2))
if stages is None:
stages = width + guard
# calculate the constants
if func_mode == "circular":
s = range(stages)
a = [atan(2**-i) for i in s]
g = [sqrt(1 + 2**(-2*i)) for i in s]
zmax = pi/2
elif func_mode == "linear":
s = range(stages)
a = [2**-i for i in s]
g = [1 for i in s]
zmax = 2.
elif func_mode == "hyperbolic":
s = list(range(1, stages+1))
# need to repeat these stages:
j = 4
while j < stages+1:
s.append(j)
j = 3*j + 1
s.sort()
stages = len(s)
a = [atanh(2**-i) for i in s]
g = [sqrt(1 - 2**(-2*i)) for i in s]
zmax = 1.
a = [Signal((width+guard, True), "{}{}".format("a", i),
reset=int(round(ai*2**(width + guard - 1)/zmax)))
for i, ai in enumerate(a)]
self.zmax = zmax #/2**(width - 1)
self.gain = 1.
for gi in g:
self.gain *= gi
exec_target, num_reg, self.latency, self.interval = {
"combinatorial": (self.comb, stages + 1, 0, 1),
"pipelined": (self.sync, stages + 1, stages, 1),
"iterative": (self.sync, 3, stages + 1, stages + 1),
}[eval_mode]
# i/o and inter-stage signals
self.fresh = Signal()
self.xi, self.yi, self.zi, self.xo, self.yo, self.zo = (
Signal((width, True), l + io) for io in "io" for l in "xyz")
x, y, z = ([Signal((width + guard, True), "{}{}".format(l, i))
for i in range(num_reg)] for l in "xyz")
self.comb += [
x[0].eq(self.xi<<guard),
y[0].eq(self.yi<<guard),
z[0].eq(self.zi<<guard),
self.xo.eq(x[-1]>>guard),
self.yo.eq(y[-1]>>guard),
self.zo.eq(z[-1]>>guard),
]
if eval_mode in ("combinatorial", "pipelined"):
self.comb += self.fresh.eq(1)
for i in range(stages):
exec_target += self.stage(x[i], y[i], z[i],
x[i + 1], y[i + 1], z[i + 1], i, a[i])
elif eval_mode == "iterative":
# we afford one additional iteration for register in/out
# shifting, trades muxes for registers
i = Signal(max=stages + 1)
ai = Signal((width+guard, True))
self.comb += ai.eq(Array(a)[i])
exec_target += [
i.eq(i + 1),
If(i == stages,
i.eq(0),
self.fresh.eq(1),
Cat(x[1], y[1], z[1]).eq(Cat(x[0], y[0], z[0])),
Cat(x[2], y[2], z[2]).eq(Cat(x[1], y[1], z[1])),
).Else(
self.fresh.eq(0),
# in-place stages
self.stage(x[1], y[1], z[1], x[1], y[1], z[1], i, ai),
)]
def stage(self, xi, yi, zi, xo, yo, zo, i, a):
"""
x_{i+1} = x_{i} - m*d_i*y_i*r**(-s_{m,i})
y_{i+1} = d_i*x_i*r**(-s_{m,i}) + y_i
z_{i+1} = z_i - d_i*a_{m,i}
d_i: clockwise or counterclockwise
r: radix of the number system
m: 1: circular, 0: linear, -1: hyperbolic
s_{m,i}: non decreasing integer shift sequence
a_{m,i}: elemetary rotation angle
"""
dx, dy, dz = xi>>i, yi>>i, a
# FIXME need 1'sd0 here, "Signal((n, True)) >= 0" is always true
# as 1'd0 makes the comparison unsigned
direction = {"rotate": zi[-1], "vector": ~yi[-1]}[self.cordic_mode]
dy = {"circular": dy, "linear": 0, "hyperbolic": -dy}[self.func_mode]
ret = If(direction,
xo.eq(xi + dy),
yo.eq(yi - dx),
zo.eq(zi + dz),
).Else(
xo.eq(xi - dy),
yo.eq(yi + dx),
zo.eq(zi - dz),
)
return ret
class Cordic(TwoQuadrantCordic):
def __init__(self, **kwargs):
TwoQuadrantCordic.__init__(self, **kwargs)
if not (self.func_mode, self.cordic_mode) == ("circular", "rotate"):
return # no need to remap quadrants
cxi, cyi, czi, cxo, cyo, czo = (self.xi, self.yi, self.zi,
self.xo, self.yo, self.zo)
width = flen(self.xi)
for l in "xyz":
for d in "io":
setattr(self, l+d, Signal((width, True), l+d))
qin = Signal()
qout = Signal()
if self.latency == 0:
self.comb += qout.eq(qin)
elif self.latency == 1:
self.sync += qout.eq(qin)
else:
sr = Signal(self.latency-1)
self.sync += Cat(sr, qout).eq(Cat(qin, sr))
pi2 = (1<<(width-2))-1
self.zmax *= 2
self.comb += [
# zi, zo are scaled to cover the range, this also takes
# care of mapping the zi quadrants
Cat(cxi, cyi, czi).eq(Cat(self.xi, self.yi, self.zi<<1)),
Cat(self.xo, self.yo, self.zo).eq(Cat(cxo, cyo, czo>>1)),
# shift in the (2,3)-quadrant flag
qin.eq((-self.zi < -pi2) | (self.zi+1 < -pi2)),
# need to remap xo/yo quadrants (2,3) -> (4,1)
If(qout,
self.xo.eq(-cxo),
self.yo.eq(-cyo),
)]
class TB(Module):
def __init__(self, n, **kwargs):
self.submodules.cordic = Cordic(**kwargs)
self.xi = [.9/self.cordic.gain] * n
self.yi = [0] * n
self.zi = [2*i/n-1 for i in range(n)]
self.xo = []
self.yo = []
self.zo = []
def do_simulation(self, s):
c = 2**(flen(self.cordic.xi)-1)
if s.rd(self.cordic.fresh):
self.xo.append(s.rd(self.cordic.xo))
self.yo.append(s.rd(self.cordic.yo))
self.zo.append(s.rd(self.cordic.zo))
if not self.xi:
s.interrupt = True
return
for r, v in zip((self.cordic.xi, self.cordic.yi, self.cordic.zi),
(self.xi, self.yi, self.zi)):
s.wr(r, int(v.pop(0)*c))
def main():
from migen.fhdl import verilog
from migen.sim.generic import Simulator, TopLevel
from matplotlib import pyplot as plt
import numpy as np
c = Cordic(width=16, eval_mode="iterative",
cordic_mode="rotate", func_mode="circular")
print(verilog.convert(c, ios={c.xi, c.yi, c.zi, c.xo,
c.yo, c.zo}))
n = 200
tb = TB(n, width=8, guard=3, eval_mode="pipelined",
cordic_mode="rotate", func_mode="circular")
sim = Simulator(tb, TopLevel("cordic.vcd"))
sim.run(n*16+20)
plt.plot(tb.xo)
plt.plot(tb.yo)
plt.plot(tb.zo)
plt.show()
def rms_err(width, stages, n):
from migen.sim.generic import Simulator
import numpy as np
import matplotlib.pyplot as plt
tb = TB(width=int(width), stages=int(stages), n=n,
eval_mode="combinatorial")
sim = Simulator(tb)
sim.run(n+100)
z = tb.cordic.zmax*(np.arange(n)/n*2-1)
x = np.cos(z)*.9
y = np.sin(z)*.9
dx = tb.xo[1:]-x*2**(width-1)
dy = tb.yo[1:]-y*2**(width-1)
return ((dx**2+dy**2)**.5).sum()/n
def test_err():
from matplotlib import pyplot as plt
import numpy as np
widths, stages = np.mgrid[4:33:1, 4:33:1]
err = np.vectorize(lambda w, s: rms_err(w, s, 173))(widths, stages)
err = -np.log2(err)/widths
print(err)
plt.contour(widths, stages, err, 50, cmap=plt.cm.Greys)
plt.plot(widths[:, 0], stages[0, np.argmax(err, 1)], "bx-")
print(widths[:, 0], stages[0, np.argmax(err, 1)])
plt.colorbar()
plt.grid("on")
plt.show()
if __name__ == "__main__":
main()
#rms_err(16, 16, 345)
#test_err()