soc/interconnect/packet: Remove last_be support in LiteX, specialized Packetizer/Depacketizer have been moved to LiteEth to simplify development and avoid eventual regresion on others cores.
As seen during the last LiteEth developments, last_be data qualifier is not easy to handle correctly and should be replaced by a simpler data qualifier (similar to AXI's tkeep/tstrb). It will be easier to do so by having a local copy of Packetizer/Depacketizer directly in LiteEth (still with last_be support) and work on the simpler data qualifier in LiteX (and test it on LitePCIe).
This commit is contained in:
parent
96101521be
commit
47b3c9bc08
|
@ -254,85 +254,6 @@ class Packetizer(Module):
|
|||
)
|
||||
)
|
||||
|
||||
# Last BE.
|
||||
# FIXME: Switch to a simpler Data Qualifier and remove Last BE handling/section.
|
||||
if hasattr(sink, "last_be") and hasattr(source, "last_be"):
|
||||
# For an 8-bit data path, last_be really should be 1 when last is
|
||||
# asserted, other values do not make sense. However, legacy code
|
||||
# might not set last_be at all, and thus it will be set to 0. To
|
||||
# remain compatible with this code, this "corrects" last_be for
|
||||
# 8-bit paths by setting it to the value of last.
|
||||
if len(sink.last_be) == 1:
|
||||
sink_last_be = Signal.like(sink.last_be)
|
||||
self.comb += [ sink_last_be.eq(sink.last) ]
|
||||
else:
|
||||
sink_last_be = sink.last_be
|
||||
|
||||
# last_be needs to be right-rotated by the number of bytes which
|
||||
# would be required to have a properly aligned header.
|
||||
right_rot_by = header_leftover
|
||||
|
||||
# Calculate a rotated last_be
|
||||
new_last_be = Signal.like(sink_last_be)
|
||||
self.comb += [
|
||||
new_last_be.eq(Cat([
|
||||
sink_last_be[(i - right_rot_by) % bytes_per_clk]
|
||||
for i in range(bytes_per_clk)
|
||||
]))
|
||||
]
|
||||
|
||||
# Conditionally delay the calculated last_be for one clock cycle, if
|
||||
# it now applies to the next bus word OR if the source is not ready.
|
||||
delayed_last_be = Signal.like(sink_last_be)
|
||||
|
||||
# FSM used to conveniently assign combinational and synchronous
|
||||
# signals in the same context.
|
||||
self.submodules.last_be_fsm = last_be_fsm = FSM(reset_state="DEFAULT")
|
||||
|
||||
# Whether the main FSM is in one of the DATA-COPY states. This is
|
||||
# important as we overwrite sink.ready below and need to have
|
||||
# different behavior depending on the Packetizer's state
|
||||
in_data_copy = Signal()
|
||||
self.comb += [
|
||||
in_data_copy.eq(self.fsm.ongoing("ALIGNED-DATA-COPY") | self.fsm.ongoing("UNALIGNED-DATA-COPY"))
|
||||
]
|
||||
|
||||
self.last_be_fsm.act("DEFAULT",
|
||||
# Test whether our right-shift causes a wrap-around. In that
|
||||
# case apply the last value to the current bus word. Otherwise
|
||||
# delay it to the next.
|
||||
If(in_data_copy & sink.last & (sink_last_be > new_last_be),
|
||||
# Right shift did not wrap around, need to delay the
|
||||
# calculated last_be value and last by one cycle.
|
||||
source.last.eq(0),
|
||||
source.last_be.eq(0),
|
||||
If(source.ready & source.valid,
|
||||
NextValue(delayed_last_be, new_last_be),
|
||||
NextState("DELAYED"),
|
||||
),
|
||||
).Elif(in_data_copy,
|
||||
# Output the calculated last_be value on the current packet
|
||||
# already. For the next sink packet, ignore any last_be
|
||||
source.last.eq(sink.last),
|
||||
source.last_be.eq(new_last_be),
|
||||
),
|
||||
If(in_data_copy,
|
||||
sink.ready.eq(source.ready),
|
||||
).Elif(self.fsm.ongoing("IDLE"),
|
||||
sink.ready.eq(~sink.valid),
|
||||
)
|
||||
)
|
||||
|
||||
self.last_be_fsm.act("DELAYED",
|
||||
# Output the delayed last and last_be signals
|
||||
source.last.eq(1),
|
||||
source.last_be.eq(delayed_last_be),
|
||||
sink.ready.eq(0),
|
||||
If(source.ready,
|
||||
NextState("DEFAULT"),
|
||||
),
|
||||
)
|
||||
|
||||
# Error.
|
||||
if hasattr(sink, "error") and hasattr(source, "error"):
|
||||
self.comb += source.error.eq(sink.error)
|
||||
|
@ -438,102 +359,6 @@ class Depacketizer(Module):
|
|||
if hasattr(sink, "error") and hasattr(source, "error"):
|
||||
self.comb += source.error.eq(sink.error)
|
||||
|
||||
# Last BE.
|
||||
# FIXME: Switch to a simpler Data Qualifier and remove Last BE handling/section.
|
||||
if hasattr(sink, "last_be") and hasattr(source, "last_be"):
|
||||
# For an 8-bit data path, last_be really should be 1 when last is
|
||||
# asserted, other values do not make sense. However, legacy code
|
||||
# might not set last_be at all, and thus it will be set to 0. To
|
||||
# remain compatible with this code, this "corrects" last_be for
|
||||
# 8-bit paths by setting it to the value of last.
|
||||
if len(sink.last_be) == 1:
|
||||
sink_last_be = Signal.like(sink.last_be)
|
||||
self.comb += [ sink_last_be.eq(sink.last) ]
|
||||
else:
|
||||
sink_last_be = sink.last_be
|
||||
|
||||
# last_be needs to be left-rotated by the number of bytes which
|
||||
# would be required to have a properly aligned header.
|
||||
left_rot_by = (bytes_per_clk - header_leftover) % bytes_per_clk
|
||||
|
||||
# Calculate a rotated last_be
|
||||
new_last_be = Signal.like(sink_last_be)
|
||||
self.comb += [
|
||||
new_last_be.eq(Cat([
|
||||
sink_last_be[(i - left_rot_by) % bytes_per_clk]
|
||||
for i in range(bytes_per_clk)
|
||||
]))
|
||||
]
|
||||
|
||||
# Conditionally delay the calculated last_be for one clock cycle, if
|
||||
# it now applies to the next bus word.
|
||||
delayed_last_be = Signal.like(sink_last_be)
|
||||
|
||||
# FSM used to conveniently assign combinational and synchronous
|
||||
# signals in the same context.
|
||||
self.submodules.last_be_fsm = last_be_fsm = FSM(reset_state="DEFAULT")
|
||||
|
||||
# Whether the main FSM is / was in one of the DATA-COPY states. This
|
||||
# is important as we must handle a special case when last is
|
||||
# asserted while the Depacketizer has just transitioned out of
|
||||
# writing the header, which we can then detect by checking
|
||||
# (~was_in_copy & is_in_copy).
|
||||
is_in_copy = Signal()
|
||||
was_in_copy = Signal()
|
||||
self.comb += [
|
||||
is_in_copy.eq(
|
||||
self.fsm.ongoing("ALIGNED-DATA-COPY") | self.fsm.ongoing("UNALIGNED-DATA-COPY")
|
||||
)
|
||||
]
|
||||
self.sync += [
|
||||
was_in_copy.eq(is_in_copy)
|
||||
]
|
||||
|
||||
self.last_be_fsm.act("DEFAULT",
|
||||
# Test whether our left-shift has caused an wrap-around, in that
|
||||
# case delay last and last_be and apply to the next bus word.
|
||||
If(sink.valid & sink.last & (sink_last_be > new_last_be),
|
||||
# last_be did wrap around. Need to delay the calculated
|
||||
# last_be value and last by one cycle.
|
||||
source.last.eq(0),
|
||||
source.last_be.eq(0),
|
||||
# Normally just wait until a source bus transaction occurred
|
||||
# (ready + valid) until the delayed last_be can be
|
||||
# output. However, if the first word is also the last, this
|
||||
# will mean that the source isn't valid currently as the
|
||||
# header is still being sent. Thus, if sink.valid and
|
||||
# sink.last and we've just transitioned into the data copy
|
||||
# phase, we can immediately jump into the DELAYED state (as
|
||||
# the very first bus word containing proper data is also the
|
||||
# last one, and we've just transitioned to putting that on
|
||||
# the bus).
|
||||
If((source.ready & source.valid) | (~was_in_copy & is_in_copy),
|
||||
NextValue(delayed_last_be, new_last_be),
|
||||
NextState("DELAYED"),
|
||||
),
|
||||
).Elif(sink.last,
|
||||
# Simply forward the calculated last_be value.
|
||||
source.last.eq(1),
|
||||
source.last_be.eq(new_last_be),
|
||||
),
|
||||
If(self.fsm.ongoing("ALIGNED-DATA-COPY") \
|
||||
| (self.fsm.ongoing("UNALIGNED-DATA-COPY") & ~fsm_from_idle),
|
||||
sink.ready.eq(source.ready),
|
||||
).Else(
|
||||
sink.ready.eq(1),
|
||||
),
|
||||
)
|
||||
|
||||
self.last_be_fsm.act("DELAYED",
|
||||
# Output the delayed last and last_be signals
|
||||
source.last.eq(1),
|
||||
source.last_be.eq(delayed_last_be),
|
||||
sink.ready.eq(0),
|
||||
If(source.ready & source.valid,
|
||||
NextState("DEFAULT"),
|
||||
),
|
||||
)
|
||||
|
||||
# PacketFIFO ---------------------------------------------------------------------------------------
|
||||
|
||||
class PacketFIFO(Module):
|
||||
|
|
|
@ -1,188 +0,0 @@
|
|||
#
|
||||
# This file is part of LiteX.
|
||||
#
|
||||
# Copyright (c) 2021 Leon Schuermann <leon@is.currently.online>
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
|
||||
import unittest
|
||||
import random
|
||||
|
||||
from migen import *
|
||||
|
||||
from litex.soc.interconnect.stream import *
|
||||
from litex.soc.interconnect.packet import *
|
||||
|
||||
from .test_stream2 import StreamPacket, stream_inserter, stream_collector, compare_packets
|
||||
|
||||
def mask_last_be(dw, data, last_be):
|
||||
masked_data = 0
|
||||
|
||||
for byte in range(dw // 8):
|
||||
if 2**byte > last_be:
|
||||
break
|
||||
masked_data |= data & (0xFF << (byte * 8))
|
||||
|
||||
return masked_data
|
||||
|
||||
class TestPacket(unittest.TestCase):
|
||||
def loopback_test(self, dw, seed=42, with_last_be=False, debug_print=False):
|
||||
# Independent random number generator to ensure we're the
|
||||
# stream_inserter and stream_collectors still have
|
||||
# reproducible behavior independent of the headers
|
||||
prng = random.Random(seed + 5)
|
||||
|
||||
# Generate a random number of differently sized header fields
|
||||
nheader_fields = prng.randrange(16)
|
||||
i = 0
|
||||
packet_header_length = 0
|
||||
packet_header_fields = {}
|
||||
while packet_header_length < dw // 8 or i < nheader_fields:
|
||||
# Header field size can be 1, 2, 4, 8, 16 bytes
|
||||
field_length = 2**prng.randrange(5)
|
||||
packet_header_fields["field{}_{}b".format(i, field_length * 8)] = \
|
||||
HeaderField(packet_header_length, 0, field_length * 8)
|
||||
packet_header_length += field_length
|
||||
i += 1
|
||||
|
||||
packet_header = Header(
|
||||
fields = packet_header_fields,
|
||||
length = packet_header_length,
|
||||
swap_field_bytes = bool(prng.getrandbits(1)))
|
||||
|
||||
def packet_description(dw):
|
||||
param_layout = packet_header.get_layout()
|
||||
payload_layout = [("data", dw)]
|
||||
|
||||
if with_last_be:
|
||||
payload_layout += [("last_be", dw // 8)]
|
||||
|
||||
return EndpointDescription(payload_layout, param_layout)
|
||||
|
||||
def raw_description(dw):
|
||||
payload_layout = [("data", dw)]
|
||||
|
||||
if with_last_be:
|
||||
payload_layout += [("last_be", dw // 8)]
|
||||
|
||||
return EndpointDescription(payload_layout)
|
||||
|
||||
# Prepare packets
|
||||
npackets = 32
|
||||
packets = []
|
||||
for n in range(npackets):
|
||||
header = {}
|
||||
for name, headerfield in packet_header_fields.items():
|
||||
header[name] = prng.randrange(2**headerfield.width)
|
||||
datas = [prng.randrange(2**8) for _ in range(prng.randrange(dw - 1) + 1)]
|
||||
packets.append(StreamPacket(datas, header))
|
||||
|
||||
class DUT(Module):
|
||||
def __init__(self):
|
||||
self.submodules.packetizer = Packetizer(
|
||||
packet_description(dw),
|
||||
raw_description(dw),
|
||||
packet_header,
|
||||
)
|
||||
self.submodules.depacketizer = Depacketizer(
|
||||
raw_description(dw),
|
||||
packet_description(dw),
|
||||
packet_header,
|
||||
)
|
||||
self.comb += self.packetizer.source.connect(self.depacketizer.sink)
|
||||
self.sink, self.source = self.packetizer.sink, self.depacketizer.source
|
||||
|
||||
dut = DUT()
|
||||
recvd_packets = []
|
||||
run_simulation(
|
||||
dut,
|
||||
[
|
||||
stream_inserter(
|
||||
dut.sink,
|
||||
src=packets,
|
||||
seed=seed,
|
||||
debug_print=debug_print,
|
||||
valid_rand=50,
|
||||
),
|
||||
stream_collector(
|
||||
dut.source,
|
||||
dest=recvd_packets,
|
||||
expect_npackets=npackets,
|
||||
seed=seed,
|
||||
debug_print=debug_print,
|
||||
ready_rand=50,
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
# When we don't have a last_be signal, the Packetizer will simply throw
|
||||
# away the partial bus word. The Depacketizer will then fill up these
|
||||
# values with garbage again. Thus we also have to remove the proper
|
||||
# amount of bytes from the sent packets so the comparson will work.
|
||||
if not with_last_be and dw != 8:
|
||||
# Modulo operation which returns the divisor instead of zero.
|
||||
def upmod(a, b):
|
||||
return b if a % b == 0 else a % b
|
||||
|
||||
for (packet, recvd_packet) in zip(packets, recvd_packets):
|
||||
# How many bytes of the header have to be interleaved with the
|
||||
# first data word on the bus.
|
||||
header_leftover = packet_header_length % (dw // 8)
|
||||
|
||||
# If the last word of our data would fit together with the
|
||||
# header_leftover bytes in a single bus word, all data (plus
|
||||
# some trailing garbage) will arrive. Otherwise, some data bytes
|
||||
# will be missing.
|
||||
if header_leftover != 0 and \
|
||||
header_leftover + upmod(len(packet.data), dw // 8) <= (dw // 8):
|
||||
# The entire data will arrive, plus some trailing
|
||||
# garbage. Remove that.
|
||||
garbage_bytes = -len(packet.data) % (dw // 8)
|
||||
recvd_packet.data = recvd_packet.data[:-garbage_bytes]
|
||||
else:
|
||||
# header_leftover bytes in received data have been replaced
|
||||
# with garbage. Remove these bytes from the received and
|
||||
# sent data.
|
||||
recvd_packet.data = recvd_packet.data[:-header_leftover]
|
||||
packet.data = packet.data[:len(recvd_packet.data)]
|
||||
|
||||
self.assertTrue(compare_packets(packets, recvd_packets))
|
||||
|
||||
# def test_8bit_loopback(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=8, seed=seed)
|
||||
#
|
||||
# def test_8bit_loopback_last_be(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=8, seed=seed, with_last_be=True)
|
||||
#
|
||||
# def test_32bit_loopback(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=32, seed=seed)
|
||||
#
|
||||
# def test_32bit_loopback_last_be(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=32, seed=seed, with_last_be=True)
|
||||
#
|
||||
# def test_64bit_loopback(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=64, seed=seed)
|
||||
#
|
||||
# def test_64bit_loopback_last_be(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=64, seed=seed, with_last_be=True)
|
||||
#
|
||||
# def test_128bit_loopback(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=128, seed=seed)
|
||||
#
|
||||
# def test_128bit_loopback_last_be(self):
|
||||
# for seed in range(42, 48):
|
||||
# with self.subTest(seed=seed):
|
||||
# self.loopback_test(dw=128, seed=seed, with_last_be=True)
|
|
@ -1,339 +0,0 @@
|
|||
#
|
||||
# This file is part of LiteX.
|
||||
#
|
||||
# Copyright (c) 2021 Leon Schuermann <leon@is.currently.online>
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
|
||||
import unittest
|
||||
import unittest
|
||||
import random
|
||||
import itertools
|
||||
import sys
|
||||
|
||||
from migen import *
|
||||
|
||||
from litex.soc.interconnect.stream import *
|
||||
|
||||
# Function to iterate over chunks of data, from
|
||||
# https://docs.python.org/3/library/itertools.html#itertools-recipes
|
||||
def grouper(iterable, n, fillvalue=None):
|
||||
"Collect data into fixed-length chunks or blocks"
|
||||
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
|
||||
args = [iter(iterable)] * n
|
||||
return itertools.zip_longest(*args, fillvalue=fillvalue)
|
||||
|
||||
class StreamPacket:
|
||||
def __init__(self, data, params={}):
|
||||
# Data must be a list of bytes
|
||||
assert type(data) == list
|
||||
for b in data:
|
||||
assert type(b) == int and b >= 0 and b < 256
|
||||
|
||||
# Params must be a dictionary of strings mapping to integers
|
||||
assert type(params) == dict
|
||||
for param_key, param_value in params.items():
|
||||
assert type(param_key) == str
|
||||
assert type(param_value) == int
|
||||
|
||||
self.data = data
|
||||
self.params = params
|
||||
|
||||
def compare(self, other, quiet=True, output_target=sys.stdout):
|
||||
if len(self.data) != len(other.data):
|
||||
if not quiet:
|
||||
print("Length mismatch in number of received bytes of packet:" \
|
||||
" {} {}".format(len(self.data), len(other.data)),
|
||||
file=sys.stdout)
|
||||
return False
|
||||
|
||||
|
||||
for nbyte, (byte_a, byte_b) in enumerate(zip(self.data, other.data)):
|
||||
if byte_a != byte_b:
|
||||
if not quiet:
|
||||
print("Mismatch between sent and received bytes {}: " \
|
||||
"0x{:02x} 0x{:02x}".format(nbyte, byte_a, byte_b),
|
||||
file=sys.stdout)
|
||||
return False
|
||||
|
||||
if set(self.params.keys()) != set(other.params.keys()):
|
||||
if not quiet:
|
||||
print("Sent and received packets have different param fields:" \
|
||||
" {} {}".format(self.params.keys(), other.params.keys()),
|
||||
file=sys.stdout)
|
||||
return False
|
||||
|
||||
for param_name, self_param_value in self.params.items():
|
||||
other_param_value = other.params[param_name]
|
||||
if self_param_value != other_param_value:
|
||||
if not quiet:
|
||||
print("Sent and received packets have different value for" \
|
||||
" param signal \"{}\": 0x{:x} 0x{:x}".format(
|
||||
param_name,
|
||||
self_param_value,
|
||||
other_param_value),
|
||||
file=sys.stdout)
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def stream_inserter(
|
||||
sink,
|
||||
src,
|
||||
seed=42,
|
||||
valid_rand=50,
|
||||
debug_print=False,
|
||||
broken_8bit_last_be=True):
|
||||
"""Insert a list of packets of bytes on to the stream interface `sink`. If
|
||||
`sink` has a `last_be` signal, that is set accordingly.
|
||||
|
||||
"""
|
||||
|
||||
prng = random.Random(seed)
|
||||
|
||||
# Extract the data width from the provided sink Endpoint
|
||||
dw = len(sink.data)
|
||||
|
||||
# Make sure dw is evenly divisible by 8 as the logic below relies on
|
||||
# that. Also, last_be wouldn't make much sense otherwise.
|
||||
assert dw % 8 == 0
|
||||
|
||||
# If a last_be signal is provided, it must contain one bit per byte of data,
|
||||
# i.e. be dw // 8 long.
|
||||
if hasattr(sink, "last_be"):
|
||||
assert dw // 8 == len(sink.last_be)
|
||||
|
||||
# src is a list of lists. Each list represents a packet of bytes. Send each
|
||||
# packet over the bus.
|
||||
for pi, packet in enumerate(src):
|
||||
assert len(packet.data) > 0, "Packets of length 0 are not compatible " \
|
||||
"with the ready/valid stream interface"
|
||||
|
||||
# Each packet is a list. We must send dw // 8 bytes at a time. Use the
|
||||
# grouper method to get a chunked iterator over the packet bytes and
|
||||
# shift them to their correct position. Use a random filler byte to
|
||||
# complete a bus word.
|
||||
words = []
|
||||
for chunk in grouper(packet.data, dw // 8, prng.randrange(256)):
|
||||
word = 0
|
||||
for i, b in enumerate(chunk):
|
||||
assert b >= 0 and b < 256
|
||||
word |= b << (i * 8)
|
||||
words += [word]
|
||||
|
||||
if hasattr(sink, "last_be"):
|
||||
encoded_last_be = Constant(
|
||||
1 << ((len(packet.data) - 1) % (dw // 8)),
|
||||
bits_sign=len(sink.last_be)
|
||||
)
|
||||
|
||||
# In legacy code for 8bit data paths last_be might not be set
|
||||
# properly: while last_be should always be equal to last for 8bit
|
||||
# data paths, if new code interacts with old code which is not yet
|
||||
# last_be aware, it might always be deasserted. If
|
||||
# broken_8bit_last_be is set and we have an 8bit data path, randomly
|
||||
# set last_be to either one or zero to check whether the DUT handles
|
||||
# these cases properly.
|
||||
if broken_8bit_last_be and dw == 8:
|
||||
encoded_last_be = Constant(prng.randrange(2), bits_sign=1)
|
||||
|
||||
# At the very beginning of the packet transmission, set the param
|
||||
# signals
|
||||
for param_signal, param_value in packet.params.items():
|
||||
yield getattr(sink, param_signal).eq(param_value)
|
||||
|
||||
for i, word in enumerate(words):
|
||||
last = i == len(words) - 1
|
||||
|
||||
# Place the word on the bus, if its the last word set last and
|
||||
# last_be accordingly and finally set sink to valid
|
||||
yield sink.data.eq(word)
|
||||
yield sink.last.eq(last)
|
||||
if hasattr(sink, "last_be"):
|
||||
if last:
|
||||
yield sink.last_be.eq(encoded_last_be)
|
||||
else:
|
||||
yield sink.last_be.eq(0)
|
||||
yield sink.valid.eq(1)
|
||||
yield
|
||||
|
||||
# Wait until the sink has become ready for one clock cycle
|
||||
while not (yield sink.ready):
|
||||
yield
|
||||
|
||||
# Set sink to not valid for a random amount of time
|
||||
yield sink.valid.eq(0)
|
||||
while prng.randrange(100) < valid_rand:
|
||||
yield
|
||||
|
||||
# Okay, we've transmitted a packet. We must set sink.valid to false, for
|
||||
# good measure clear all other signals as well. We don't explicitly
|
||||
# yield, given a there might be a new packet waiting already.
|
||||
yield sink.data.eq(0)
|
||||
yield sink.last.eq(0)
|
||||
if hasattr(sink, "last_be"):
|
||||
yield sink.last_be.eq(0)
|
||||
for param_signal in packet.params.keys():
|
||||
yield getattr(sink, param_signal).eq(0)
|
||||
yield sink.valid.eq(0)
|
||||
|
||||
if debug_print:
|
||||
print("Sent packet {}.".format(pi), file=sys.stderr)
|
||||
|
||||
# All packets have been transmitted. sink.valid has already been
|
||||
# deasserted, yield once to properly apply that value.
|
||||
yield
|
||||
|
||||
def stream_collector(
|
||||
source,
|
||||
dest=[],
|
||||
expect_npackets=None,
|
||||
seed=42,
|
||||
ready_rand=50,
|
||||
debug_print=False):
|
||||
"""Consume some packets of bytes from the stream interface
|
||||
`source`. If `source` has a `last_be` signal, that is respected
|
||||
properly.
|
||||
|
||||
"""
|
||||
|
||||
prng = random.Random(seed)
|
||||
|
||||
# Extract the data width from the provided source endpoint
|
||||
dw = len(source.data)
|
||||
|
||||
# Make sure dw is evenly divisible by 8 as the logic below relies on
|
||||
# that. Also, last_be wouldn't make much sense otherwise.
|
||||
assert dw % 8 == 0
|
||||
|
||||
# If a last_be signal is provided, it must contain one bit per byte of data,
|
||||
# i.e. be dw // 8 long.
|
||||
if hasattr(source, "last_be"):
|
||||
assert dw // 8 == len(source.last_be)
|
||||
|
||||
# Extract "param_signals" from the source Endpoint. They are extracted on
|
||||
# the first valid word of a packet. If dest will be a list of tuples with
|
||||
# data and param signals if there are any, otherwise just a list of lists.
|
||||
param_signals = [
|
||||
signal_name for signal_name, _, _ in source.param.layout
|
||||
] if hasattr(source, "param") else []
|
||||
|
||||
# Loop for collecting individual packets, separated by source.last
|
||||
while expect_npackets == None or len(dest) < expect_npackets:
|
||||
# Buffer for the current packet
|
||||
collected_bytes = []
|
||||
param_signal_states = {}
|
||||
|
||||
# Iterate until "last" has been seen. That concludes the end of a bus
|
||||
# transaction / packet.
|
||||
read_last = False
|
||||
first_word = True
|
||||
while not read_last:
|
||||
# We are ready to accept another bus word
|
||||
yield source.ready.eq(1)
|
||||
yield
|
||||
|
||||
# Wait for data to become valid
|
||||
while (yield source.valid) == 0:
|
||||
yield
|
||||
|
||||
# Data is now valid, read it byte by byte
|
||||
data = yield source.data
|
||||
for byte in range(dw // 8):
|
||||
if (yield source.last) == 1:
|
||||
read_last = True
|
||||
if hasattr(source, "last_be") and \
|
||||
2**byte > (yield source.last_be):
|
||||
break
|
||||
collected_bytes += [((data >> (byte * 8)) & 0xFF)]
|
||||
|
||||
# Also, if this is the first loop iteration, latch all param signals
|
||||
for param_signal in param_signals:
|
||||
param_signal_states[param_signal] = \
|
||||
yield getattr(source, param_signal)
|
||||
|
||||
# Set source to not valid for a random amount of time
|
||||
yield source.ready.eq(0)
|
||||
while prng.randrange(100) < ready_rand:
|
||||
yield
|
||||
|
||||
# This is no longer the first loop iteration
|
||||
first_word = False
|
||||
|
||||
# A full packet has been read. Append it to dest.
|
||||
dest += [StreamPacket(collected_bytes, param_signal_states)]
|
||||
if debug_print:
|
||||
print("Received packet {}.".format(len(dest) - 1), file=sys.stderr)
|
||||
|
||||
def generate_test_packets(npackets, seed=42):
|
||||
# Generate a number of last-terminated bus transaction byte contents (dubbed
|
||||
# packets)
|
||||
prng = random.Random(42)
|
||||
|
||||
packets = []
|
||||
for _ in range(npackets):
|
||||
# With a random number of bytes from [1, 1024)
|
||||
values = []
|
||||
for _ in range(prng.randrange(1023) + 1):
|
||||
# With random values from [0, 256).
|
||||
values += [prng.randrange(256)]
|
||||
packets += [StreamPacket(values)]
|
||||
|
||||
return packets
|
||||
|
||||
def compare_packets(packets_a, packets_b):
|
||||
if len(packets_a) != len(packets_b):
|
||||
print("Length mismatch in number of received packets: {} {}"
|
||||
.format(len(packets_a), len(packets_b)), file=sys.stderr)
|
||||
return False
|
||||
|
||||
for npacket, (packet_a, packet_b) in enumerate(zip(packets_a, packets_b)):
|
||||
if not packet_a.compare(packet_b):
|
||||
print("Error in packet", npacket)
|
||||
packet_a.compare(packet_b, quiet=False)
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
class TestStream(unittest.TestCase):
|
||||
def pipe_test(self, dut, seed=42, npackets=64, debug_print=False):
|
||||
# Get some data to test with
|
||||
packets = generate_test_packets(npackets, seed=seed)
|
||||
|
||||
# Buffer for received packets (filled by collector)
|
||||
recvd_packets = []
|
||||
|
||||
run_simulation(
|
||||
dut,
|
||||
[
|
||||
stream_inserter(
|
||||
dut.sink,
|
||||
src=packets,
|
||||
debug_print=debug_print,
|
||||
seed=seed,
|
||||
),
|
||||
stream_collector(
|
||||
dut.source,
|
||||
dest=recvd_packets,
|
||||
expect_npackets=npackets,
|
||||
debug_print=debug_print,
|
||||
seed=seed,
|
||||
),
|
||||
],
|
||||
)
|
||||
self.assertTrue(compare_packets(packets, recvd_packets))
|
||||
|
||||
def test_pipe_valid(self):
|
||||
# PipeValid either connects the entire payload or not. Thus we don't
|
||||
# need to test for 8bit support or a missing last_be signal
|
||||
# specifically. This test does however ensure that last_be will continue
|
||||
# to be respected in the future.
|
||||
dut = PipeValid([("data", 32), ("last_be", 4)])
|
||||
self.pipe_test(dut)
|
||||
|
||||
def test_pipe_ready(self):
|
||||
# PipeReady either connects the entire stream Endpoint or not. Thus we
|
||||
# don't need to test for 8bit support or a missing last_be signal
|
||||
# specifically. This test does however ensure that last_be will continue
|
||||
# to be respected in the future.
|
||||
dut = PipeReady([("data", 64), ("last_be", 8)])
|
||||
self.pipe_test(dut)
|
Loading…
Reference in New Issue