Merge pull request #378 from betrusted-io/merge_ip

Request to merge I2S and SPIOPI cores
This commit is contained in:
enjoy-digital 2020-02-06 16:29:33 +01:00 committed by GitHub
commit c2c80b5d0a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 1498 additions and 0 deletions

435
litex/soc/cores/i2s.py Normal file
View file

@ -0,0 +1,435 @@
# This file is Copyright (c) 2020 bunnie <bunnie@kosagi.com>
# License: BSD
from litex.soc.interconnect.csr_eventmanager import *
from litex.soc.interconnect import wishbone
from litex.soc.integration.doc import AutoDoc, ModuleDoc
from migen.genlib.cdc import MultiReg
class i2s_slave(Module, AutoCSR, AutoDoc):
def __init__(self, pads, fifodepth=256):
self.intro = ModuleDoc("""
Intro
*******
I2S slave creates a slave audio interface instance. Tx and Rx interfaces are inferred
based upon the presence or absence of the respective pins in the "pads" argument.
The interface is I2S-like, but note the deviation that the bits are justified
left without a 1-bit pad after sync edges. This isn't a problem for talking to the LM49352
codec this was designed for, as the bit offset is programmable, but this will not work well if
are talking to a CODEC without a programmable bit offset!
System Interface
=================
Audio interchange is done with the system using 16-bit stereo samples, with the right channel
mapped to the least significant word of a 32-bit word. Thus each 32-bit word is a single
stereo sample. As this is a slave I2S interface, sampling rate and framing is set by the programming
of the audio CODEC chip. A slave situation is preferred because this defers the generation of
audio clocks to the CODEC, which has PLLs specialized to generate the correct frequencies for
audio sampling rates.
`fifodepth` is the depth at which either a read interrupt is fired (guaranteeing at least `fifodepth`
stereo samples in the receive FIFO) or a write interrupt is fired (guaranteeing at least `fifodepth`
free space in the transmit FIFO). The maximum depth is 512.
To receive audio data:
- reset the Rx FIFO, to guarantee all pointers at zero
- hook the Rx full interrupt with an interrupt handler (optional)
- if the CODEC is not yet transmitting data, initiate data transmission
- enable Rx FIFO to run
- poll or wait for interrupt; upon interrupt, read `fifodepth` words. Repeat.
- to close the stream, simply clear the Rx FIFO enable bit. The next initiation should call a
reset of the FIFO to ensure leftover previous data is cleared from the FIFO.
To transmit audio data:
- reset the Tx FIFO, to guarantee all pointers at zero
- hook the Tx available interrupt with an interrupt handler (optional)
- write 512 words of data into the Tx FIFO, filling it to the max
- if the CODEC is not yet requesting data and unmuted, unmute and initiate reception
- enable the Tx FIFO to run
- poll or wait for interrupt; upon interrupt, write `fifodepth` words. Repeat.
- to close stream, mute the DAC and stop the request clock. Ideally, this can be completed before
the FIFO is emptied, so there is no jarring pop or truncation of data
- stop FIFO running. Next initiation should reset the FIFO to ensure leftover previous data in
FIFO is cleared.
CODEC Interface
================
The interface assumes we have a sysclk domain running around 100MHz, and that our typical
max audio rate is 44.1kHz * 24bits * 2channels = 2.1168MHz audio clock. Thus, the architecture
treats the audio clock and data as asynchronous inputs that are MultiReg-syncd into the clock
domain. Probably the slowest sysclk rate this might work with is around 20-25MHz (10x over
sampling), but at 100MHz things will be quite comfortable.
The upside of the fully asynchronous implementation is that we can leave the I/O unconstrained,
giving the place/route more latitude to do its job.
Here's the timing format targeted by this I2S interface:
.. wavedrom::
:caption: Timing format of the I2S interface
{ "signal" : [
{ "name": "clk", "wave": "n....|.......|......" },
{ "name": "sync", "wave": "1.0..|....1..|....0." },
{ "name": "tx/rx", "wave": ".====|==x.===|==x.=x", "data": ["L15", "L14", "...", "L1", "L0", "R15", "R14", "...", "R1", "R0", "L15"] },
]}
- Data is updated on the falling edge
- Data is sampled on the rising edge
- Words are MSB-to-LSB, left-justified (**NOTE: this is a deviation from strict I2S, which offsets by 1 from the left**)
- Sync is an input (FPGA is slave, codec is master): low => left channel, high => right channel
- Sync can be longer than the wordlen, extra bits are just ignored
- Tx is data to the codec (SDI pin on LM49352)
- Rx is data from the codec (SDO pin on LM49352)
""")
# one cache line is 8 32-bit words, need to always have enough space for one line or else nothing works
if fifodepth > 504:
fifodepth = 504
print("I2S warning: fifo depth greater than 504 selected; truncating to 504")
if fifodepth < 8:
fifodepth = 8
print("I2S warning: fifo depth less than 8 selected; truncating to 8")
# connect pins, synchronizers, and edge detectors
if hasattr(pads, 'tx'):
tx_pin = Signal()
self.comb += pads.tx.eq(tx_pin)
if hasattr(pads, 'rx'):
rx_pin = Signal()
self.specials += MultiReg(pads.rx, rx_pin)
sync_pin = Signal()
self.specials += MultiReg(pads.sync, sync_pin)
clk_pin = Signal()
self.specials += MultiReg(pads.clk, clk_pin)
clk_d = Signal()
self.sync += clk_d.eq(clk_pin)
rising_edge = Signal()
falling_edge = Signal()
self.comb += [rising_edge.eq(clk_pin & ~clk_d), falling_edge.eq(~clk_pin & clk_d)]
# wishbone bus
self.bus = wishbone.Interface()
rd_ack = Signal()
wr_ack = Signal()
self.comb +=[
If(self.bus.we,
self.bus.ack.eq(wr_ack),
).Else(
self.bus.ack.eq(rd_ack),
)
]
# interrupts
self.submodules.ev = EventManager()
if hasattr(pads, 'rx'):
self.ev.rx_ready = EventSourcePulse(description="Indicates FIFO is ready to read") # rising edge triggered
self.ev.rx_error = EventSourcePulse(description="Indicates an Rx error has happened (over/underflow)")
if hasattr(pads, 'tx'):
self.ev.tx_ready = EventSourcePulse(description="Indicates enough space available for next Tx quanta of {} words".format(fifodepth))
self.ev.tx_error = EventSourcePulse(description="Indicates a Tx error has happened (over/underflow")
self.ev.finalize()
# build the RX subsystem
if hasattr(pads, 'rx'):
rx_rd_d = Signal(32)
rx_almostfull = Signal()
rx_almostempty = Signal()
rx_full = Signal()
rx_empty = Signal()
rx_rdcount = Signal(9)
rx_rderr = Signal()
rx_wrerr = Signal()
rx_wrcount = Signal(9)
rx_rden = Signal()
rx_wr_d = Signal(32)
rx_wren = Signal()
self.rx_ctl = CSRStorage(description="Rx data path control",
fields=[
CSRField("enable", size=1, description="Enable the receiving data"),
CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
])
self.rx_stat = CSRStatus(description="Rx data path status",
fields=[
CSRField("overflow", size=1, description="Rx overflow"),
CSRField("underflow", size=1, description="Rx underflow"),
CSRField("dataready", size=1, description="{} words of data loaded and ready to read".format(fifodepth)),
CSRField("empty", size=1, description="No data available in FIFO to read"), # next flags probably never used
CSRField("wrcount", size=9, description="Write count"),
CSRField("rdcount", size=9, description="Read count"),
CSRField("fifodepth", size=9, description="FIFO depth as synthesized")
])
self.comb += self.rx_stat.fields.fifodepth.eq(fifodepth)
rx_rst_cnt = Signal(3)
rx_reset = Signal()
self.sync += [
If(self.rx_ctl.fields.reset,
rx_rst_cnt.eq(5), # 5 cycles reset required by design
rx_reset.eq(1)
).Else(
If(rx_rst_cnt == 0,
rx_reset.eq(0)
).Else(
rx_rst_cnt.eq(rx_rst_cnt - 1),
rx_reset.eq(1)
)
)
]
# at a width of 32 bits, an 18kiB fifo is 512 entries deep
self.specials += Instance("FIFO_SYNC_MACRO",
p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
p_ALMOST_EMPTY_OFFSET=8, p_ALMOST_FULL_OFFSET=(512 - fifodepth),
p_DO_REG=0,
o_ALMOSTFULL=rx_almostfull, o_ALMOSTEMPTY=rx_almostempty,
o_DO=rx_rd_d, o_EMPTY=rx_empty, o_FULL=rx_full,
o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
i_DI=rx_wr_d, i_CLK=ClockSignal(), i_RDEN=rx_rden & ~rx_reset,
i_WREN=rx_wren & ~rx_reset, i_RST=rx_reset,
)
self.comb += [ # wire up the status signals and interrupts
self.rx_stat.fields.overflow.eq(rx_wrerr),
self.rx_stat.fields.underflow.eq(rx_rderr),
self.rx_stat.fields.dataready.eq(rx_almostfull),
self.rx_stat.fields.wrcount.eq(rx_wrcount),
self.rx_stat.fields.rdcount.eq(rx_rdcount),
self.ev.rx_ready.trigger.eq(rx_almostfull),
self.ev.rx_error.trigger.eq(rx_wrerr | rx_rderr),
]
bus_read = Signal()
bus_read_d = Signal()
rd_ack_pipe = Signal()
self.comb += bus_read.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 0))
self.sync += [ # this is the bus responder -- only works for uncached memory regions
bus_read_d.eq(bus_read),
If(bus_read & ~bus_read_d, # one response, one cycle
rd_ack_pipe.eq(1),
If(~rx_empty,
self.bus.dat_r.eq(rx_rd_d),
rx_rden.eq(1),
).Else(
self.bus.dat_r.eq(0xDEADBEEF), # don't stall the bus indefinitely if we try to read from an empty fifo...just return garbage
rx_rden.eq(0),
)
).Else(
rx_rden.eq(0),
rd_ack_pipe.eq(0),
),
rd_ack.eq(rd_ack_pipe),
]
rx_cnt = Signal(5)
self.submodules.rxi2s = rxi2s = FSM(reset_state="IDLE")
rxi2s.act("IDLE",
NextValue(rx_wr_d, 0),
If(self.rx_ctl.fields.enable,
If(rising_edge & sync_pin, # wait_sync guarantees we start at the beginning of a left frame, and not in the middle
NextState("WAIT_SYNC"),
)
)
),
rxi2s.act("WAIT_SYNC",
If(rising_edge & ~sync_pin,
NextState("LEFT"),
NextValue(rx_cnt, 16),
),
)
rxi2s.act("LEFT",
If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
NextValue(rx_cnt, rx_cnt - 1),
NextState("LEFT_WAIT"),
)
)
rxi2s.act("LEFT_WAIT",
If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
If(rising_edge,
If((rx_cnt == 0) & sync_pin,
NextValue(rx_cnt, 16),
NextState("RIGHT")
).Elif(rx_cnt > 0,
NextState("LEFT"),
)
)
)
)
rxi2s.act("RIGHT",
If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
NextValue(rx_cnt, rx_cnt - 1),
NextState("RIGHT_WAIT"),
)
)
rxi2s.act("RIGHT_WAIT",
If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
If(rising_edge,
If((rx_cnt == 0) & ~sync_pin,
NextValue(rx_cnt, 16),
NextState("LEFT"),
rx_wren.eq(1), # pulse rx_wren to write the current data word
).Elif(rx_cnt > 0,
NextState("RIGHT"),
)
)
)
)
# build the TX subsystem
if hasattr(pads, 'tx'):
tx_rd_d = Signal(32)
tx_almostfull = Signal()
tx_almostempty = Signal()
tx_full = Signal()
tx_empty = Signal()
tx_rdcount = Signal(9)
tx_rderr = Signal()
tx_wrerr = Signal()
tx_wrcount = Signal(9)
tx_rden = Signal()
tx_wr_d = Signal(32)
tx_wren = Signal()
self.tx_ctl = CSRStorage(description="Tx data path control",
fields=[
CSRField("enable", size=1, description="Enable the transmission data"),
CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
])
self.tx_stat = CSRStatus(description="Tx data path status",
fields=[
CSRField("overflow", size=1, description="Tx overflow"),
CSRField("underflow", size=1, description="Tx underflow"),
CSRField("free", size=1, description="At least {} words of space free".format(fifodepth)),
CSRField("almostfull", size=1, description="Less than 8 words space available"), # the next few flags should be rarely used
CSRField("full", size=1, description="FIFO is full or overfull"),
CSRField("empty", size=1, description="FIFO is empty"),
CSRField("wrcount", size=9, description="Tx write count"),
CSRField("rdcount", size=9, description="Tx read count"),
])
tx_rst_cnt = Signal(3)
tx_reset = Signal()
self.sync += [
If(self.tx_ctl.fields.reset,
tx_rst_cnt.eq(5), # 5 cycles reset required by design
tx_reset.eq(1)
).Else(
If(tx_rst_cnt == 0,
tx_reset.eq(0)
).Else(
tx_rst_cnt.eq(tx_rst_cnt - 1),
tx_reset.eq(1)
)
)
]
# at a width of 32 bits, an 18kiB fifo is 512 entries deep
self.specials += Instance("FIFO_SYNC_MACRO",
p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
p_ALMOST_EMPTY_OFFSET=fifodepth, p_ALMOST_FULL_OFFSET=8,
p_DO_REG=0,
o_ALMOSTFULL=tx_almostfull, o_ALMOSTEMPTY=tx_almostempty,
o_DO=tx_rd_d, o_EMPTY=tx_empty, o_FULL=tx_full,
o_RDCOUNT=tx_rdcount, o_RDERR=tx_rderr, o_WRCOUNT=tx_wrcount, o_WRERR=tx_wrerr,
i_DI=tx_wr_d, i_CLK=ClockSignal(), i_RDEN=tx_rden & ~tx_reset,
i_WREN=tx_wren & ~tx_reset, i_RST=tx_reset,
)
self.comb += [ # wire up the status signals and interrupts
self.tx_stat.fields.overflow.eq(tx_wrerr),
self.tx_stat.fields.underflow.eq(tx_rderr),
self.tx_stat.fields.free.eq(tx_almostempty),
self.tx_stat.fields.almostfull.eq(tx_almostfull),
self.tx_stat.fields.full.eq(tx_full),
self.tx_stat.fields.empty.eq(tx_empty),
self.tx_stat.fields.rdcount.eq(tx_rdcount),
self.tx_stat.fields.wrcount.eq(tx_wrcount),
self.ev.tx_ready.trigger.eq(tx_almostempty),
self.ev.tx_error.trigger.eq(tx_wrerr | tx_rderr),
]
self.sync += [ # this is the bus responder -- need to check how this interacts with uncached memory region
If(self.bus.cyc & self.bus.stb & self.bus.we & ~self.bus.ack,
If(~tx_full,
tx_wr_d.eq(self.bus.dat_w),
tx_wren.eq(1),
wr_ack.eq(1),
).Else(
tx_wren.eq(0),
wr_ack.eq(0),
)
).Else(
tx_wren.eq(0),
wr_ack.eq(0),
)
]
tx_cnt = Signal(5)
tx_buf = Signal(32)
self.submodules.txi2s = txi2s = FSM(reset_state="IDLE")
txi2s.act("IDLE",
If(self.tx_ctl.fields.enable,
If(falling_edge & sync_pin,
NextState("WAIT_SYNC"),
)
)
),
txi2s.act("WAIT_SYNC",
If(falling_edge & ~sync_pin,
NextState("LEFT"),
NextValue(tx_cnt, 16),
NextValue(tx_buf, tx_rd_d),
tx_rden.eq(1),
),
)
txi2s.act("LEFT",
If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
NextValue(tx_pin, tx_buf[31]),
NextValue(tx_buf, Cat(0, tx_buf[:-1])),
NextValue(tx_cnt, tx_cnt - 1),
NextState("LEFT_WAIT"),
)
)
txi2s.act("LEFT_WAIT",
If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
If(falling_edge,
If((tx_cnt == 0) & sync_pin,
NextValue(tx_cnt, 16),
NextState("RIGHT")
).Elif(tx_cnt > 0,
NextState("LEFT"),
)
)
)
)
txi2s.act("RIGHT",
If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
NextValue(tx_pin, tx_buf[31]),
NextValue(tx_buf, Cat(0, tx_buf[:-1])),
NextValue(tx_cnt, tx_cnt - 1),
NextState("RIGHT_WAIT"),
)
)
txi2s.act("RIGHT_WAIT",
If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
If(falling_edge,
If((tx_cnt == 0) & ~sync_pin,
NextValue(tx_cnt, 16),
NextState("LEFT"),
NextValue(tx_buf, tx_rd_d),
tx_rden.eq(1),
).Elif(tx_cnt > 0,
NextState("RIGHT"),
)
)
)
)

1063
litex/soc/cores/spiopi.py Normal file

File diff suppressed because it is too large Load diff