litex/migen/sim/core.py

324 lines
11 KiB
Python

import operator
from migen.fhdl.structure import *
from migen.fhdl.structure import (_Value, _Statement,
_Operator, _Slice, _ArrayProxy,
_Assign, _Fragment)
from migen.fhdl.tools import list_signals, list_targets, insert_resets
from migen.fhdl.simplify import MemoryToArray
from migen.fhdl.specials import _MemoryLocation
from migen.sim.vcd import VCDWriter, DummyVCDWriter
class ClockState:
def __init__(self, high, half_period, time_before_trans):
self.high = high
self.half_period = half_period
self.time_before_trans = time_before_trans
class TimeManager:
def __init__(self, description):
self.clocks = dict()
for k, period_phase in description.items():
if isinstance(period_phase, tuple):
period, phase = period_phase
else:
period = period_phase
phase = 0
half_period = period//2
if phase >= half_period:
phase -= half_period
high = True
else:
high = False
self.clocks[k] = ClockState(high, half_period, half_period - phase)
def tick(self):
rising = set()
falling = set()
dt = min(cs.time_before_trans for cs in self.clocks.values())
for k, cs in self.clocks.items():
if cs.time_before_trans == dt:
cs.high = not cs.high
if cs.high:
rising.add(k)
else:
falling.add(k)
cs.time_before_trans -= dt
if not cs.time_before_trans:
cs.time_before_trans += cs.half_period
return dt, rising, falling
str2op = {
"~": operator.invert,
"+": operator.add,
"-": operator.sub,
"*": operator.mul,
">>>": operator.rshift,
"<<<": operator.lshift,
"&": operator.and_,
"^": operator.xor,
"|": operator.or_,
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">": operator.gt,
">=": operator.ge,
}
class Evaluator:
def __init__(self, clock_domains, replaced_memories):
self.clock_domains = clock_domains
self.replaced_memories = replaced_memories
self.signal_values = dict()
self.modifications = dict()
def commit(self):
r = set()
for k, v in self.modifications.items():
if k not in self.signal_values or self.signal_values[k] != v:
self.signal_values[k] = v
r.add(k)
self.modifications.clear()
return r
def eval(self, node, postcommit=False):
if isinstance(node, Constant):
return node.value
elif isinstance(node, Signal):
if postcommit:
try:
return self.modifications[node]
except KeyError:
pass
try:
return self.signal_values[node]
except KeyError:
return node.reset.value
elif isinstance(node, _Operator):
operands = [self.eval(o, postcommit) for o in node.operands]
if node.op == "-":
if len(operands) == 1:
return -operands[0]
else:
return operands[0] - operands[1]
elif node.op == "m":
return operands[1] if operands[0] else operands[2]
else:
return str2op[node.op](*operands)
elif isinstance(node, _Slice):
v = self.eval(node.value, postcommit)
idx = range(node.start, node.stop)
return sum(((v >> i) & 1) << j for j, i in enumerate(idx))
elif isinstance(node, Cat):
shift = 0
r = 0
for element in node.l:
nbits = len(element)
# make value always positive
r |= (self.eval(element, postcommit) & (2**nbits-1)) << shift
shift += nbits
return r
elif isinstance(node, _ArrayProxy):
return self.eval(node.choices[self.eval(node.key, postcommit)],
postcommit)
elif isinstance(node, _MemoryLocation):
array = self.replaced_memories[node.memory]
return self.eval(array[self.eval(node.index, postcommit)], postcommit)
elif isinstance(node, ClockSignal):
return self.eval(self.clock_domains[node.cd].clk, postcommit)
elif isinstance(node, ResetSignal):
rst = self.clock_domains[node.cd].rst
if rst is None:
if node.allow_reset_less:
return 0
else:
raise ValueError("Attempted to get reset signal of resetless"
" domain '{}'".format(node.cd))
else:
return self.eval(rst, postcommit)
else:
raise NotImplementedError
def assign(self, node, value):
if isinstance(node, Signal):
assert not node.variable
value = value & (2**node.nbits - 1)
if node.signed and (value & 2**(node.nbits - 1)):
value -= 2**node.nbits
self.modifications[node] = value
elif isinstance(node, Cat):
for element in node.l:
nbits = len(element)
self.assign(element, value & (2**nbits-1))
value >>= nbits
elif isinstance(node, _Slice):
full_value = self.eval(node.value, True)
# clear bits assigned to by the slice
full_value &= ~((2**node.stop-1) - (2**node.start-1))
# set them to the new value
value &= 2**(node.stop - node.start)-1
full_value |= value << node.start
self.assign(node.value, full_value)
elif isinstance(node, _ArrayProxy):
self.assign(node.choices[self.eval(node.key)], value)
elif isinstance(node, _MemoryLocation):
array = self.replaced_memories[node.memory]
self.assign(array[self.eval(node.index)], value)
else:
raise NotImplementedError
def execute(self, statements):
for s in statements:
if isinstance(s, _Assign):
self.assign(s.l, self.eval(s.r))
elif isinstance(s, If):
if self.eval(s.cond) & (2**len(s.cond) - 1):
self.execute(s.t)
else:
self.execute(s.f)
elif isinstance(s, Case):
test = self.eval(s.test)
for k, v in s.cases.items():
if isinstance(k, Constant) and k.value == test:
self.execute(v)
return
if "default" in s.cases:
self.execute(s.cases["default"])
elif isinstance(s, list):
self.execute(s)
else:
raise NotImplementedError
# TODO: instances via Iverilog/VPI
class Simulator:
def __init__(self, fragment_or_module, generators, clocks={"sys": 10}, vcd_name=None):
if isinstance(fragment_or_module, _Fragment):
self.fragment = fragment_or_module
else:
self.fragment = fragment_or_module.get_fragment()
if not isinstance(generators, dict):
generators = {"sys": generators}
self.generators = dict()
for k, v in generators.items():
if isinstance(v, list):
self.generators[k] = v
else:
self.generators[k] = [v]
self.time = TimeManager(clocks)
for clock in clocks.keys():
if clock not in self.fragment.clock_domains:
cd = ClockDomain(name=clock, reset_less=True)
cd.clk.reset = C(self.time.clocks[clock].high)
self.fragment.clock_domains.append(cd)
mta = MemoryToArray()
mta.transform_fragment(None, self.fragment)
insert_resets(self.fragment)
# comb signals return to their reset value if nothing assigns them
self.fragment.comb[0:0] = [s.eq(s.reset)
for s in list_targets(self.fragment.comb)]
self.evaluator = Evaluator(self.fragment.clock_domains,
mta.replacements)
if vcd_name is None:
self.vcd = DummyVCDWriter()
else:
signals = list_signals(self.fragment)
for cd in self.fragment.clock_domains:
signals.add(cd.clk)
if cd.rst is not None:
signals.add(cd.rst)
for memory_array in mta.replacements.values():
signals |= set(memory_array)
signals = sorted(signals, key=lambda x: x.duid)
self.vcd = VCDWriter(vcd_name, signals)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()
def close(self):
self.vcd.close()
def _commit_and_comb_propagate(self):
# TODO: optimize
all_modified = set()
modified = self.evaluator.commit()
all_modified |= modified
while modified:
self.evaluator.execute(self.fragment.comb)
modified = self.evaluator.commit()
all_modified |= modified
for signal in all_modified:
self.vcd.set(signal, self.evaluator.signal_values[signal])
def _evalexec_nested_lists(self, x):
if isinstance(x, list):
return [self._evalexec_nested_lists(e) for e in x]
elif isinstance(x, _Value):
return self.evaluator.eval(x)
elif isinstance(x, _Statement):
self.evaluator.execute([x])
return None
else:
raise ValueError
def _process_generators(self, cd):
exhausted = []
for generator in self.generators[cd]:
reply = None
while True:
try:
request = generator.send(reply)
if request is None:
break # next cycle
else:
reply = self._evalexec_nested_lists(request)
except StopIteration:
exhausted.append(generator)
break
for generator in exhausted:
self.generators[cd].remove(generator)
def _continue_simulation(self):
# TODO: passive generators
return any(self.generators.values())
def run(self):
self.evaluator.execute(self.fragment.comb)
self._commit_and_comb_propagate()
while True:
dt, rising, falling = self.time.tick()
self.vcd.delay(dt)
for cd in rising:
self.evaluator.assign(self.fragment.clock_domains[cd].clk, 1)
if cd in self.fragment.sync:
self.evaluator.execute(self.fragment.sync[cd])
if cd in self.generators:
self._process_generators(cd)
for cd in falling:
self.evaluator.assign(self.fragment.clock_domains[cd].clk, 0)
self._commit_and_comb_propagate()
if not self._continue_simulation():
break
def run_simulation(*args, **kwargs):
with Simulator(*args, **kwargs) as s:
s.run()