72 lines
2.2 KiB
Python
72 lines
2.2 KiB
Python
from migen.fhdl.structure import *
|
|
from migen.fhdl.module import Module
|
|
|
|
|
|
class BitonicSort(Module):
|
|
"""Combinatorial sorting network
|
|
|
|
The Bitonic sort is implemented as a combinatorial sort using
|
|
comparators and multiplexers. Its asymptotic complexity (in terms of
|
|
number of comparators/muxes) is O(n log(n)**2), like mergesort or
|
|
shellsort.
|
|
|
|
http://www.dps.uibk.ac.at/~cosenza/teaching/gpu/sort-batcher.pdf
|
|
|
|
http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
|
|
|
|
http://www.myhdl.org/doku.php/cookbook:bitonic
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Number of inputs and output signals.
|
|
m : int
|
|
Bit width of inputs and outputs. Or a tuple of `(m, signed)`.
|
|
ascending : bool
|
|
Sort direction. `True` if input is to be sorted ascending,
|
|
`False` for descending. Defaults to ascending.
|
|
|
|
Attributes
|
|
----------
|
|
i : list of Signals, in
|
|
Input values, each `m` wide.
|
|
o : list of Signals, out
|
|
Output values, sorted, each `m` bits wide.
|
|
"""
|
|
def __init__(self, n, m, ascending=True):
|
|
self.i = [Signal(m) for i in range(n)]
|
|
self.o = [Signal(m) for i in range(n)]
|
|
self._sort(self.i, self.o, int(ascending), m)
|
|
|
|
def _sort_two(self, i0, i1, o0, o1, dir):
|
|
self.comb += [
|
|
o0.eq(i0),
|
|
o1.eq(i1),
|
|
If(dir == (i0 > i1),
|
|
o0.eq(i1),
|
|
o1.eq(i0),
|
|
)]
|
|
|
|
def _merge(self, i, o, dir, m):
|
|
n = len(i)
|
|
k = n//2
|
|
if n > 1:
|
|
t = [Signal(m) for j in range(n)]
|
|
for j in range(k):
|
|
self._sort_two(i[j], i[j + k], t[j], t[j + k], dir)
|
|
self._merge(t[:k], o[:k], dir, m)
|
|
self._merge(t[k:], o[k:], dir, m)
|
|
else:
|
|
self.comb += o[0].eq(i[0])
|
|
|
|
def _sort(self, i, o, dir, m):
|
|
n = len(i)
|
|
k = n//2
|
|
if n > 1:
|
|
t = [Signal(m) for j in range(n)]
|
|
self._sort(i[:k], t[:k], 1, m) # ascending
|
|
self._sort(i[k:], t[k:], 0, m) # descending
|
|
self._merge(t, o, dir, m)
|
|
else:
|
|
self.comb += o[0].eq(i[0])
|