litex/litex/soc/interconnect/wishbone.py
Florent Kermarrec 19f58dd971 interconnect/wishbone: add FlipFlop to allow UpConverter to be used
Note: a test should be added for Converter and DownConverter/UpConverter should be cleaned up
2019-09-09 11:47:36 +02:00

707 lines
22 KiB
Python

# This file is Copyright (c) 2015 Sebastien Bourdeauducq <sb@m-labs.hk>
# This file is Copyright (c) 2015-2019 Florent Kermarrec <florent@enjoy-digital.fr>
# This file is Copyright (c) 2018 Tim 'mithro' Ansell <me@mith.ro>
# License: BSD
from functools import reduce
from operator import or_
from migen import *
from migen.genlib import roundrobin
from migen.genlib.record import *
from migen.genlib.misc import split, displacer, chooser, WaitTimer
from migen.genlib.fsm import FSM, NextState
from litex.soc.interconnect import csr
# TODO: rewrite without FlipFlop
_layout = [
("adr", "adr_width", DIR_M_TO_S),
("dat_w", "data_width", DIR_M_TO_S),
("dat_r", "data_width", DIR_S_TO_M),
("sel", "sel_width", DIR_M_TO_S),
("cyc", 1, DIR_M_TO_S),
("stb", 1, DIR_M_TO_S),
("ack", 1, DIR_S_TO_M),
("we", 1, DIR_M_TO_S),
("cti", 3, DIR_M_TO_S),
("bte", 2, DIR_M_TO_S),
("err", 1, DIR_S_TO_M)
]
class Interface(Record):
def __init__(self, data_width=32, adr_width=30):
Record.__init__(self, set_layout_parameters(_layout,
adr_width=adr_width,
data_width=data_width,
sel_width=data_width//8))
@staticmethod
def like(other):
return Interface(len(other.dat_w))
def _do_transaction(self):
yield self.cyc.eq(1)
yield self.stb.eq(1)
yield
while not (yield self.ack):
yield
yield self.cyc.eq(0)
yield self.stb.eq(0)
def write(self, adr, dat, sel=None):
if sel is None:
sel = 2**len(self.sel) - 1
yield self.adr.eq(adr)
yield self.dat_w.eq(dat)
yield self.sel.eq(sel)
yield self.we.eq(1)
yield from self._do_transaction()
def read(self, adr):
yield self.adr.eq(adr)
yield self.we.eq(0)
yield from self._do_transaction()
return (yield self.dat_r)
class InterconnectPointToPoint(Module):
def __init__(self, master, slave):
self.comb += master.connect(slave)
class Arbiter(Module):
def __init__(self, masters, target):
self.submodules.rr = roundrobin.RoundRobin(len(masters))
# mux master->slave signals
for name, size, direction in _layout:
if direction == DIR_M_TO_S:
choices = Array(getattr(m, name) for m in masters)
self.comb += getattr(target, name).eq(choices[self.rr.grant])
# connect slave->master signals
for name, size, direction in _layout:
if direction == DIR_S_TO_M:
source = getattr(target, name)
for i, m in enumerate(masters):
dest = getattr(m, name)
if name == "ack" or name == "err":
self.comb += dest.eq(source & (self.rr.grant == i))
else:
self.comb += dest.eq(source)
# connect bus requests to round-robin selector
reqs = [m.cyc for m in masters]
self.comb += self.rr.request.eq(Cat(*reqs))
class Decoder(Module):
# slaves is a list of pairs:
# 0) function that takes the address signal and returns a FHDL expression
# that evaluates to 1 when the slave is selected and 0 otherwise.
# 1) wishbone.Slave reference.
# register adds flip-flops after the address comparators. Improves timing,
# but breaks Wishbone combinatorial feedback.
def __init__(self, master, slaves, register=False):
ns = len(slaves)
slave_sel = Signal(ns)
slave_sel_r = Signal(ns)
# decode slave addresses
self.comb += [slave_sel[i].eq(fun(master.adr))
for i, (fun, bus) in enumerate(slaves)]
if register:
self.sync += slave_sel_r.eq(slave_sel)
else:
self.comb += slave_sel_r.eq(slave_sel)
# connect master->slaves signals except cyc
for slave in slaves:
for name, size, direction in _layout:
if direction == DIR_M_TO_S and name != "cyc":
self.comb += getattr(slave[1], name).eq(getattr(master, name))
# combine cyc with slave selection signals
self.comb += [slave[1].cyc.eq(master.cyc & slave_sel[i])
for i, slave in enumerate(slaves)]
# generate master ack (resp. err) by ORing all slave acks (resp. errs)
self.comb += [
master.ack.eq(reduce(or_, [slave[1].ack for slave in slaves])),
master.err.eq(reduce(or_, [slave[1].err for slave in slaves]))
]
# mux (1-hot) slave data return
masked = [Replicate(slave_sel_r[i], len(master.dat_r)) & slaves[i][1].dat_r for i in range(ns)]
self.comb += master.dat_r.eq(reduce(or_, masked))
class Timeout(Module):
def __init__(self, master, cycles):
self.error = Signal()
# # #
timer = WaitTimer(int(cycles))
self.submodules += timer
self.comb += [
timer.wait.eq(master.stb & master.cyc & ~master.ack),
If(timer.done,
master.dat_r.eq((2**len(master.dat_w))-1),
master.ack.eq(1),
self.error.eq(1)
)
]
class InterconnectShared(Module):
def __init__(self, masters, slaves, register=False, timeout_cycles=1e6):
shared = Interface()
self.submodules.arbiter = Arbiter(masters, shared)
self.submodules.decoder = Decoder(shared, slaves, register)
if timeout_cycles is not None:
self.submodules.timeout = Timeout(shared, timeout_cycles)
class Crossbar(Module):
def __init__(self, masters, slaves, register=False):
matches, busses = zip(*slaves)
access = [[Interface() for j in slaves] for i in masters]
# decode each master into its access row
for row, master in zip(access, masters):
row = list(zip(matches, row))
self.submodules += Decoder(master, row, register)
# arbitrate each access column onto its slave
for column, bus in zip(zip(*access), busses):
self.submodules += Arbiter(column, bus)
class DownConverter(Module):
"""DownConverter
This module splits Wishbone accesses from a master interface to a smaller
slave interface.
Writes:
Writes from master are splitted N writes to the slave. Access is acked when the last
access is acked by the slave.
Reads:
Read from master are splitted in N reads to the the slave. Read datas from
the slave are cached before being presented concatenated on the last access.
"""
def __init__(self, master, slave):
dw_from = len(master.dat_r)
dw_to = len(slave.dat_w)
ratio = dw_from//dw_to
# # #
read = Signal()
write = Signal()
counter = Signal(max=ratio)
counter_reset = Signal()
counter_ce = Signal()
self.sync += \
If(counter_reset,
counter.eq(0)
).Elif(counter_ce,
counter.eq(counter + 1)
)
counter_done = Signal()
self.comb += counter_done.eq(counter == ratio-1)
# Main FSM
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
counter_reset.eq(1),
If(master.stb & master.cyc,
If(master.we,
NextState("WRITE")
).Else(
NextState("READ")
)
)
)
fsm.act("WRITE",
write.eq(1),
slave.we.eq(1),
slave.cyc.eq(1),
If(master.stb & master.cyc,
slave.stb.eq(1),
If(slave.ack,
counter_ce.eq(1),
If(counter_done,
master.ack.eq(1),
NextState("IDLE")
)
)
).Elif(~master.cyc,
NextState("IDLE")
)
)
fsm.act("READ",
read.eq(1),
slave.cyc.eq(1),
If(master.stb & master.cyc,
slave.stb.eq(1),
If(slave.ack,
counter_ce.eq(1),
If(counter_done,
master.ack.eq(1),
NextState("IDLE")
)
)
).Elif(~master.cyc,
NextState("IDLE")
)
)
# Address
self.comb += [
If(counter_done,
slave.cti.eq(7) # indicate end of burst
).Else(
slave.cti.eq(2)
),
slave.adr.eq(Cat(counter, master.adr))
]
# Datapath
cases = {}
for i in range(ratio):
cases[i] = [
slave.sel.eq(master.sel[i*dw_to//8:(i+1)*dw_to]),
slave.dat_w.eq(master.dat_w[i*dw_to:(i+1)*dw_to])
]
self.comb += Case(counter, cases)
cached_data = Signal(dw_from)
self.comb += master.dat_r.eq(Cat(cached_data[dw_to:], slave.dat_r))
self.sync += \
If(read & counter_ce,
cached_data.eq(master.dat_r)
)
@ResetInserter()
@CEInserter()
class FlipFlop(Module):
def __init__(self, *args, **kwargs):
self.d = Signal(*args, **kwargs)
self.q = Signal(*args, **kwargs)
self.sync += self.q.eq(self.d)
class UpConverter(Module):
"""UpConverter
This module up-converts wishbone accesses and bursts from a master interface
to a wider slave interface. This allows efficient use wishbone bursts.
Writes:
Wishbone writes are cached before being written to the slave. Access to
the slave is done at the end of a burst or when address reach end of burst
addressing.
Reads:
Cache is refilled only at the beginning of each burst, the subsequent
reads of a burst use the cached data.
"""
def __init__(self, master, slave):
dw_from = len(master.dat_r)
dw_to = len(slave.dat_w)
ratio = dw_to//dw_from
ratiobits = log2_int(ratio)
# # #
write = Signal()
evict = Signal()
refill = Signal()
read = Signal()
address = FlipFlop(30)
self.submodules += address
self.comb += address.d.eq(master.adr)
counter = Signal(max=ratio)
counter_ce = Signal()
counter_reset = Signal()
self.sync += \
If(counter_reset,
counter.eq(0)
).Elif(counter_ce,
counter.eq(counter + 1)
)
counter_offset = Signal(max=ratio)
counter_done = Signal()
self.comb += [
counter_offset.eq(address.q),
counter_done.eq((counter + counter_offset) == ratio-1)
]
cached_data = Signal(dw_to)
cached_sel = Signal(dw_to//8)
end_of_burst = Signal()
self.comb += end_of_burst.eq(~master.cyc |
(master.stb & master.cyc & master.ack & ((master.cti == 7) | counter_done)))
need_refill = FlipFlop(reset=1)
self.submodules += need_refill
self.comb += [
need_refill.reset.eq(end_of_burst),
need_refill.d.eq(0)
]
# Main FSM
self.submodules.fsm = fsm = FSM()
fsm.act("IDLE",
counter_reset.eq(1),
If(master.stb & master.cyc,
address.ce.eq(1),
If(master.we,
NextState("WRITE")
).Else(
If(need_refill.q,
NextState("REFILL")
).Else(
NextState("READ")
)
)
)
)
fsm.act("WRITE",
If(master.stb & master.cyc,
write.eq(1),
counter_ce.eq(1),
master.ack.eq(1),
If(counter_done,
NextState("EVICT")
)
).Elif(~master.cyc,
NextState("EVICT")
)
)
fsm.act("EVICT",
evict.eq(1),
slave.stb.eq(1),
slave.we.eq(1),
slave.cyc.eq(1),
slave.dat_w.eq(cached_data),
slave.sel.eq(cached_sel),
If(slave.ack,
NextState("IDLE")
)
)
fsm.act("REFILL",
refill.eq(1),
slave.stb.eq(1),
slave.cyc.eq(1),
If(slave.ack,
need_refill.ce.eq(1),
NextState("READ")
)
)
fsm.act("READ",
read.eq(1),
If(master.stb & master.cyc,
master.ack.eq(1)
),
NextState("IDLE")
)
# Address
self.comb += [
slave.cti.eq(7), # we are not able to generate bursts since up-converting
slave.adr.eq(address.q[ratiobits:])
]
# Datapath
cached_datas = [FlipFlop(dw_from) for i in range(ratio)]
cached_sels = [FlipFlop(dw_from//8) for i in range(ratio)]
self.submodules += cached_datas, cached_sels
cases = {}
for i in range(ratio):
write_sel = Signal()
cases[i] = write_sel.eq(1)
self.comb += [
cached_sels[i].reset.eq(counter_reset),
If(write,
cached_datas[i].d.eq(master.dat_w),
).Else(
cached_datas[i].d.eq(slave.dat_r[dw_from*i:dw_from*(i+1)])
),
cached_sels[i].d.eq(master.sel),
If((write & write_sel) | refill,
cached_datas[i].ce.eq(1),
cached_sels[i].ce.eq(1)
)
]
self.comb += Case(counter + counter_offset, cases)
cases = {}
for i in range(ratio):
cases[i] = master.dat_r.eq(cached_datas[i].q)
self.comb += Case(address.q[:ratiobits], cases)
self.comb += [
cached_data.eq(Cat([cached_data.q for cached_data in cached_datas])),
cached_sel.eq(Cat([cached_sel.q for cached_sel in cached_sels]))
]
class Converter(Module):
"""Converter
This module is a wrapper for DownConverter and UpConverter.
It should preferably be used rather than direct instantiations
of specific converters.
"""
def __init__(self, master, slave):
self.master = master
self.slave = slave
# # #
dw_from = len(master.dat_r)
dw_to = len(slave.dat_r)
if dw_from > dw_to:
downconverter = DownConverter(master, slave)
self.submodules += downconverter
elif dw_from < dw_to:
upconverter = UpConverter(master, slave)
self.submodules += upconverter
else:
master.connect(slave)
class Cache(Module):
"""Cache
This module is a write-back wishbone cache that can be used as a L2 cache.
Cachesize (in 32-bit words) is the size of the data store and must be a power of 2
"""
def __init__(self, cachesize, master, slave):
self.master = master
self.slave = slave
# # #
dw_from = len(master.dat_r)
dw_to = len(slave.dat_r)
if dw_to > dw_from and (dw_to % dw_from) != 0:
raise ValueError("Slave data width must be a multiple of {dw}".format(dw=dw_from))
if dw_to < dw_from and (dw_from % dw_to) != 0:
raise ValueError("Master data width must be a multiple of {dw}".format(dw=dw_to))
# Split address:
# TAG | LINE NUMBER | LINE OFFSET
offsetbits = log2_int(max(dw_to//dw_from, 1))
addressbits = len(slave.adr) + offsetbits
linebits = log2_int(cachesize) - offsetbits
tagbits = addressbits - linebits
wordbits = log2_int(max(dw_from//dw_to, 1))
adr_offset, adr_line, adr_tag = split(master.adr, offsetbits, linebits, tagbits)
word = Signal(wordbits) if wordbits else None
# Data memory
data_mem = Memory(dw_to*2**wordbits, 2**linebits)
data_port = data_mem.get_port(write_capable=True, we_granularity=8)
self.specials += data_mem, data_port
write_from_slave = Signal()
if adr_offset is None:
adr_offset_r = None
else:
adr_offset_r = Signal(offsetbits)
self.sync += adr_offset_r.eq(adr_offset)
self.comb += [
data_port.adr.eq(adr_line),
If(write_from_slave,
displacer(slave.dat_r, word, data_port.dat_w),
displacer(Replicate(1, dw_to//8), word, data_port.we)
).Else(
data_port.dat_w.eq(Replicate(master.dat_w, max(dw_to//dw_from, 1))),
If(master.cyc & master.stb & master.we & master.ack,
displacer(master.sel, adr_offset, data_port.we, 2**offsetbits, reverse=True)
)
),
chooser(data_port.dat_r, word, slave.dat_w),
slave.sel.eq(2**(dw_to//8)-1),
chooser(data_port.dat_r, adr_offset_r, master.dat_r, reverse=True)
]
# Tag memory
tag_layout = [("tag", tagbits), ("dirty", 1)]
tag_mem = Memory(layout_len(tag_layout), 2**linebits)
tag_port = tag_mem.get_port(write_capable=True)
self.specials += tag_mem, tag_port
tag_do = Record(tag_layout)
tag_di = Record(tag_layout)
self.comb += [
tag_do.raw_bits().eq(tag_port.dat_r),
tag_port.dat_w.eq(tag_di.raw_bits())
]
self.comb += [
tag_port.adr.eq(adr_line),
tag_di.tag.eq(adr_tag)
]
if word is not None:
self.comb += slave.adr.eq(Cat(word, adr_line, tag_do.tag))
else:
self.comb += slave.adr.eq(Cat(adr_line, tag_do.tag))
# slave word computation, word_clr and word_inc will be simplified
# at synthesis when wordbits=0
word_clr = Signal()
word_inc = Signal()
if word is not None:
self.sync += \
If(word_clr,
word.eq(0),
).Elif(word_inc,
word.eq(word+1)
)
def word_is_last(word):
if word is not None:
return word == 2**wordbits-1
else:
return 1
# Control FSM
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
If(master.cyc & master.stb,
NextState("TEST_HIT")
)
)
fsm.act("TEST_HIT",
word_clr.eq(1),
If(tag_do.tag == adr_tag,
master.ack.eq(1),
If(master.we,
tag_di.dirty.eq(1),
tag_port.we.eq(1)
),
NextState("IDLE")
).Else(
If(tag_do.dirty,
NextState("EVICT")
).Else(
NextState("REFILL_WRTAG")
)
)
)
fsm.act("EVICT",
slave.stb.eq(1),
slave.cyc.eq(1),
slave.we.eq(1),
If(slave.ack,
word_inc.eq(1),
If(word_is_last(word),
NextState("REFILL_WRTAG")
)
)
)
fsm.act("REFILL_WRTAG",
# Write the tag first to set the slave address
tag_port.we.eq(1),
word_clr.eq(1),
NextState("REFILL")
)
fsm.act("REFILL",
slave.stb.eq(1),
slave.cyc.eq(1),
slave.we.eq(0),
If(slave.ack,
write_from_slave.eq(1),
word_inc.eq(1),
If(word_is_last(word),
NextState("TEST_HIT"),
).Else(
NextState("REFILL")
)
)
)
class SRAM(Module):
def __init__(self, mem_or_size, read_only=None, init=None, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
bus_data_width = len(self.bus.dat_r)
if isinstance(mem_or_size, Memory):
assert(mem_or_size.width <= bus_data_width)
self.mem = mem_or_size
else:
self.mem = Memory(bus_data_width, mem_or_size//(bus_data_width//8), init=init)
if read_only is None:
if hasattr(self.mem, "bus_read_only"):
read_only = self.mem.bus_read_only
else:
read_only = False
###
# memory
port = self.mem.get_port(write_capable=not read_only, we_granularity=8,
mode=READ_FIRST if read_only else WRITE_FIRST)
self.specials += self.mem, port
# generate write enable signal
if not read_only:
self.comb += [port.we[i].eq(self.bus.cyc & self.bus.stb & self.bus.we & self.bus.sel[i])
for i in range(bus_data_width//8)]
# address and data
self.comb += [
port.adr.eq(self.bus.adr[:len(port.adr)]),
self.bus.dat_r.eq(port.dat_r)
]
if not read_only:
self.comb += port.dat_w.eq(self.bus.dat_w),
# generate ack
self.sync += [
self.bus.ack.eq(0),
If(self.bus.cyc & self.bus.stb & ~self.bus.ack, self.bus.ack.eq(1))
]
class CSRBank(csr.GenericBank):
def __init__(self, description, bus=None):
if bus is None:
bus = Interface()
self.bus = bus
###
csr.GenericBank.__init__(self, description, len(self.bus.dat_w))
for i, c in enumerate(self.simple_csrs):
self.comb += [
c.r.eq(self.bus.dat_w[:c.size]),
c.re.eq(self.bus.cyc & self.bus.stb & ~self.bus.ack & self.bus.we & \
(self.bus.adr[:self.decode_bits] == i))
]
brcases = dict((i, self.bus.dat_r.eq(c.w)) for i, c in enumerate(self.simple_csrs))
self.sync += [
Case(self.bus.adr[:self.decode_bits], brcases),
If(bus.ack, bus.ack.eq(0)).Elif(bus.cyc & bus.stb, bus.ack.eq(1))
]