aboutsummaryrefslogtreecommitdiffstats
path: root/sha-256.c
diff options
context:
space:
mode:
authorGravatar Peter McGoron 2023-12-12 11:41:26 -0500
committerGravatar Peter McGoron 2023-12-12 11:41:26 -0500
commitff489bd82ff313bcfd7dc2ab585ed31cec909ebd (patch)
tree300e031693a5ddb990a32068ab0596382349aeea /sha-256.c
parentinit (diff)
fix software to compile properly on Windows XP x86
Diffstat (limited to 'sha-256.c')
-rw-r--r--sha-256.c452
1 files changed, 226 insertions, 226 deletions
diff --git a/sha-256.c b/sha-256.c
index 5a69250..8c1f18f 100644
--- a/sha-256.c
+++ b/sha-256.c
@@ -1,226 +1,226 @@
-#include "sha-256.h"
-
-#define TOTAL_LEN_LEN 8
-
-/*
- * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
- * When useful for clarification, portions of the pseudo-code are reproduced here too.
- */
-
-/*
- * @brief Rotate a 32-bit value by a number of bits to the right.
- * @param value The value to be rotated.
- * @param count The number of bits to rotate by.
- * @return The rotated value.
- */
-static inline uint32_t right_rot(uint32_t value, unsigned int count)
-{
- /*
- * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
- */
- return value >> count | value << (32 - count);
-}
-
-/*
- * @brief Update a hash value under calculation with a new chunk of data.
- * @param h Pointer to the first hash item, of a total of eight.
- * @param p Pointer to the chunk data, which has a standard length.
- *
- * @note This is the SHA-256 work horse.
- */
-static inline void consume_chunk(uint32_t *h, const uint8_t *p)
-{
- unsigned i, j;
- uint32_t ah[8];
-
- /* Initialize working variables to current hash value: */
- for (i = 0; i < 8; i++)
- ah[i] = h[i];
-
- /*
- * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
- * calculating 16 at a time.
- *
- * This optimization was not there initially and the rest of the comments about w[64] are kept in their
- * initial state.
- */
-
- /*
- * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
- * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
- * message schedule array
- */
- uint32_t w[16];
-
- /* Compression function main loop: */
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 16; j++) {
- if (i == 0) {
- w[j] =
- (uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
- p += 4;
- } else {
- /* Extend the first 16 words into the remaining 48 words w[16..63] of the
- * message schedule array: */
- const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
- (w[(j + 1) & 0xf] >> 3);
- const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
- right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
- w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
- }
- const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
- const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
-
- /*
- * Initialize array of round constants:
- * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
- */
- static const uint32_t k[] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
- 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
- 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
- 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
- 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
- 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
- 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
- 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
- 0xc67178f2};
-
- const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
- const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
- const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
- const uint32_t temp2 = s0 + maj;
-
- ah[7] = ah[6];
- ah[6] = ah[5];
- ah[5] = ah[4];
- ah[4] = ah[3] + temp1;
- ah[3] = ah[2];
- ah[2] = ah[1];
- ah[1] = ah[0];
- ah[0] = temp1 + temp2;
- }
- }
-
- /* Add the compressed chunk to the current hash value: */
- for (i = 0; i < 8; i++)
- h[i] += ah[i];
-}
-
-/*
- * Public functions. See header file for documentation.
- */
-
-void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
-{
- sha_256->hash = hash;
- sha_256->chunk_pos = sha_256->chunk;
- sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
- sha_256->total_len = 0;
- /*
- * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
- * 2..19):
- */
- sha_256->h[0] = 0x6a09e667;
- sha_256->h[1] = 0xbb67ae85;
- sha_256->h[2] = 0x3c6ef372;
- sha_256->h[3] = 0xa54ff53a;
- sha_256->h[4] = 0x510e527f;
- sha_256->h[5] = 0x9b05688c;
- sha_256->h[6] = 0x1f83d9ab;
- sha_256->h[7] = 0x5be0cd19;
-}
-
-void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
-{
- sha_256->total_len += len;
-
- /*
- * The following cast is not necessary, and could even be considered as poor practice. However, it makes this
- * file valid C++, which could be a good thing for some use cases.
- */
- const uint8_t *p = (const uint8_t *)data;
-
- while (len > 0) {
- /*
- * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
- * necessary. We operate directly on the input data instead.
- */
- if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
- consume_chunk(sha_256->h, p);
- len -= SIZE_OF_SHA_256_CHUNK;
- p += SIZE_OF_SHA_256_CHUNK;
- continue;
- }
- /* General case, no particular optimization. */
- const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
- memcpy(sha_256->chunk_pos, p, consumed_len);
- sha_256->space_left -= consumed_len;
- len -= consumed_len;
- p += consumed_len;
- if (sha_256->space_left == 0) {
- consume_chunk(sha_256->h, sha_256->chunk);
- sha_256->chunk_pos = sha_256->chunk;
- sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
- } else {
- sha_256->chunk_pos += consumed_len;
- }
- }
-}
-
-uint8_t *sha_256_close(struct Sha_256 *sha_256)
-{
- uint8_t *pos = sha_256->chunk_pos;
- size_t space_left = sha_256->space_left;
- uint32_t *const h = sha_256->h;
-
- /*
- * The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for
- * at least one byte. The next step in the calculation is to add a single one-bit to the data.
- */
- *pos++ = 0x80;
- --space_left;
-
- /*
- * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
- * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
- * an extra chunk at the end.
- */
- if (space_left < TOTAL_LEN_LEN) {
- memset(pos, 0x00, space_left);
- consume_chunk(h, sha_256->chunk);
- pos = sha_256->chunk;
- space_left = SIZE_OF_SHA_256_CHUNK;
- }
- const size_t left = space_left - TOTAL_LEN_LEN;
- memset(pos, 0x00, left);
- pos += left;
- size_t len = sha_256->total_len;
- pos[7] = (uint8_t)(len << 3);
- len >>= 5;
- int i;
- for (i = 6; i >= 0; --i) {
- pos[i] = (uint8_t)len;
- len >>= 8;
- }
- consume_chunk(h, sha_256->chunk);
- /* Produce the final hash value (big-endian): */
- int j;
- uint8_t *const hash = sha_256->hash;
- for (i = 0, j = 0; i < 8; i++) {
- hash[j++] = (uint8_t)(h[i] >> 24);
- hash[j++] = (uint8_t)(h[i] >> 16);
- hash[j++] = (uint8_t)(h[i] >> 8);
- hash[j++] = (uint8_t)h[i];
- }
- return sha_256->hash;
-}
-
-void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
-{
- struct Sha_256 sha_256;
- sha_256_init(&sha_256, hash);
- sha_256_write(&sha_256, input, len);
- (void)sha_256_close(&sha_256);
-}
+#include "sha-256.h"
+
+#define TOTAL_LEN_LEN 8
+
+/*
+ * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
+ * When useful for clarification, portions of the pseudo-code are reproduced here too.
+ */
+
+/*
+ * @brief Rotate a 32-bit value by a number of bits to the right.
+ * @param value The value to be rotated.
+ * @param count The number of bits to rotate by.
+ * @return The rotated value.
+ */
+static inline uint32_t right_rot(uint32_t value, unsigned int count)
+{
+ /*
+ * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
+ */
+ return value >> count | value << (32 - count);
+}
+
+/*
+ * @brief Update a hash value under calculation with a new chunk of data.
+ * @param h Pointer to the first hash item, of a total of eight.
+ * @param p Pointer to the chunk data, which has a standard length.
+ *
+ * @note This is the SHA-256 work horse.
+ */
+static inline void consume_chunk(uint32_t *h, const uint8_t *p)
+{
+ unsigned i, j;
+ uint32_t ah[8];
+
+ /* Initialize working variables to current hash value: */
+ for (i = 0; i < 8; i++)
+ ah[i] = h[i];
+
+ /*
+ * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
+ * calculating 16 at a time.
+ *
+ * This optimization was not there initially and the rest of the comments about w[64] are kept in their
+ * initial state.
+ */
+
+ /*
+ * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
+ * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
+ * message schedule array
+ */
+ uint32_t w[16];
+
+ /* Compression function main loop: */
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 16; j++) {
+ if (i == 0) {
+ w[j] =
+ (uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
+ p += 4;
+ } else {
+ /* Extend the first 16 words into the remaining 48 words w[16..63] of the
+ * message schedule array: */
+ const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
+ (w[(j + 1) & 0xf] >> 3);
+ const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
+ right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
+ w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
+ }
+ const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
+ const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
+
+ /*
+ * Initialize array of round constants:
+ * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
+ */
+ static const uint32_t k[] = {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
+ 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
+ 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
+ 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
+ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
+ 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
+ 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
+ 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
+ 0xc67178f2};
+
+ const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
+ const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
+ const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
+ const uint32_t temp2 = s0 + maj;
+
+ ah[7] = ah[6];
+ ah[6] = ah[5];
+ ah[5] = ah[4];
+ ah[4] = ah[3] + temp1;
+ ah[3] = ah[2];
+ ah[2] = ah[1];
+ ah[1] = ah[0];
+ ah[0] = temp1 + temp2;
+ }
+ }
+
+ /* Add the compressed chunk to the current hash value: */
+ for (i = 0; i < 8; i++)
+ h[i] += ah[i];
+}
+
+/*
+ * Public functions. See header file for documentation.
+ */
+
+void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
+{
+ sha_256->hash = hash;
+ sha_256->chunk_pos = sha_256->chunk;
+ sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
+ sha_256->total_len = 0;
+ /*
+ * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
+ * 2..19):
+ */
+ sha_256->h[0] = 0x6a09e667;
+ sha_256->h[1] = 0xbb67ae85;
+ sha_256->h[2] = 0x3c6ef372;
+ sha_256->h[3] = 0xa54ff53a;
+ sha_256->h[4] = 0x510e527f;
+ sha_256->h[5] = 0x9b05688c;
+ sha_256->h[6] = 0x1f83d9ab;
+ sha_256->h[7] = 0x5be0cd19;
+}
+
+void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
+{
+ sha_256->total_len += len;
+
+ /*
+ * The following cast is not necessary, and could even be considered as poor practice. However, it makes this
+ * file valid C++, which could be a good thing for some use cases.
+ */
+ const uint8_t *p = (const uint8_t *)data;
+
+ while (len > 0) {
+ /*
+ * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
+ * necessary. We operate directly on the input data instead.
+ */
+ if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
+ consume_chunk(sha_256->h, p);
+ len -= SIZE_OF_SHA_256_CHUNK;
+ p += SIZE_OF_SHA_256_CHUNK;
+ continue;
+ }
+ /* General case, no particular optimization. */
+ const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
+ memcpy(sha_256->chunk_pos, p, consumed_len);
+ sha_256->space_left -= consumed_len;
+ len -= consumed_len;
+ p += consumed_len;
+ if (sha_256->space_left == 0) {
+ consume_chunk(sha_256->h, sha_256->chunk);
+ sha_256->chunk_pos = sha_256->chunk;
+ sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
+ } else {
+ sha_256->chunk_pos += consumed_len;
+ }
+ }
+}
+
+uint8_t *sha_256_close(struct Sha_256 *sha_256)
+{
+ uint8_t *pos = sha_256->chunk_pos;
+ size_t space_left = sha_256->space_left;
+ uint32_t *const h = sha_256->h;
+
+ /*
+ * The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for
+ * at least one byte. The next step in the calculation is to add a single one-bit to the data.
+ */
+ *pos++ = 0x80;
+ --space_left;
+
+ /*
+ * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
+ * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
+ * an extra chunk at the end.
+ */
+ if (space_left < TOTAL_LEN_LEN) {
+ memset(pos, 0x00, space_left);
+ consume_chunk(h, sha_256->chunk);
+ pos = sha_256->chunk;
+ space_left = SIZE_OF_SHA_256_CHUNK;
+ }
+ const size_t left = space_left - TOTAL_LEN_LEN;
+ memset(pos, 0x00, left);
+ pos += left;
+ size_t len = sha_256->total_len;
+ pos[7] = (uint8_t)(len << 3);
+ len >>= 5;
+ int i;
+ for (i = 6; i >= 0; --i) {
+ pos[i] = (uint8_t)len;
+ len >>= 8;
+ }
+ consume_chunk(h, sha_256->chunk);
+ /* Produce the final hash value (big-endian): */
+ int j;
+ uint8_t *const hash = sha_256->hash;
+ for (i = 0, j = 0; i < 8; i++) {
+ hash[j++] = (uint8_t)(h[i] >> 24);
+ hash[j++] = (uint8_t)(h[i] >> 16);
+ hash[j++] = (uint8_t)(h[i] >> 8);
+ hash[j++] = (uint8_t)h[i];
+ }
+ return sha_256->hash;
+}
+
+void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
+{
+ struct Sha_256 sha_256;
+ sha_256_init(&sha_256, hash);
+ sha_256_write(&sha_256, input, len);
+ (void)sha_256_close(&sha_256);
+}