diff options
| author | 2023-12-12 11:41:26 -0500 | |
|---|---|---|
| committer | 2023-12-12 11:41:26 -0500 | |
| commit | ff489bd82ff313bcfd7dc2ab585ed31cec909ebd (patch) | |
| tree | 300e031693a5ddb990a32068ab0596382349aeea /sha-256.c | |
| parent | init (diff) | |
fix software to compile properly on Windows XP x86
Diffstat (limited to 'sha-256.c')
| -rw-r--r-- | sha-256.c | 452 |
1 files changed, 226 insertions, 226 deletions
@@ -1,226 +1,226 @@ -#include "sha-256.h" - -#define TOTAL_LEN_LEN 8 - -/* - * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here. - * When useful for clarification, portions of the pseudo-code are reproduced here too. - */ - -/* - * @brief Rotate a 32-bit value by a number of bits to the right. - * @param value The value to be rotated. - * @param count The number of bits to rotate by. - * @return The rotated value. - */ -static inline uint32_t right_rot(uint32_t value, unsigned int count) -{ - /* - * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here. - */ - return value >> count | value << (32 - count); -} - -/* - * @brief Update a hash value under calculation with a new chunk of data. - * @param h Pointer to the first hash item, of a total of eight. - * @param p Pointer to the chunk data, which has a standard length. - * - * @note This is the SHA-256 work horse. - */ -static inline void consume_chunk(uint32_t *h, const uint8_t *p) -{ - unsigned i, j; - uint32_t ah[8]; - - /* Initialize working variables to current hash value: */ - for (i = 0; i < 8; i++) - ah[i] = h[i]; - - /* - * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by - * calculating 16 at a time. - * - * This optimization was not there initially and the rest of the comments about w[64] are kept in their - * initial state. - */ - - /* - * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63] - * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the - * message schedule array - */ - uint32_t w[16]; - - /* Compression function main loop: */ - for (i = 0; i < 4; i++) { - for (j = 0; j < 16; j++) { - if (i == 0) { - w[j] = - (uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3]; - p += 4; - } else { - /* Extend the first 16 words into the remaining 48 words w[16..63] of the - * message schedule array: */ - const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^ - (w[(j + 1) & 0xf] >> 3); - const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^ - right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10); - w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1; - } - const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25); - const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]); - - /* - * Initialize array of round constants: - * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): - */ - static const uint32_t k[] = { - 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, - 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, - 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, - 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, - 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, - 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, - 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, - 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, - 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, - 0xc67178f2}; - - const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j]; - const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22); - const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]); - const uint32_t temp2 = s0 + maj; - - ah[7] = ah[6]; - ah[6] = ah[5]; - ah[5] = ah[4]; - ah[4] = ah[3] + temp1; - ah[3] = ah[2]; - ah[2] = ah[1]; - ah[1] = ah[0]; - ah[0] = temp1 + temp2; - } - } - - /* Add the compressed chunk to the current hash value: */ - for (i = 0; i < 8; i++) - h[i] += ah[i]; -} - -/* - * Public functions. See header file for documentation. - */ - -void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH]) -{ - sha_256->hash = hash; - sha_256->chunk_pos = sha_256->chunk; - sha_256->space_left = SIZE_OF_SHA_256_CHUNK; - sha_256->total_len = 0; - /* - * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes - * 2..19): - */ - sha_256->h[0] = 0x6a09e667; - sha_256->h[1] = 0xbb67ae85; - sha_256->h[2] = 0x3c6ef372; - sha_256->h[3] = 0xa54ff53a; - sha_256->h[4] = 0x510e527f; - sha_256->h[5] = 0x9b05688c; - sha_256->h[6] = 0x1f83d9ab; - sha_256->h[7] = 0x5be0cd19; -} - -void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len) -{ - sha_256->total_len += len; - - /* - * The following cast is not necessary, and could even be considered as poor practice. However, it makes this - * file valid C++, which could be a good thing for some use cases. - */ - const uint8_t *p = (const uint8_t *)data; - - while (len > 0) { - /* - * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are - * necessary. We operate directly on the input data instead. - */ - if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) { - consume_chunk(sha_256->h, p); - len -= SIZE_OF_SHA_256_CHUNK; - p += SIZE_OF_SHA_256_CHUNK; - continue; - } - /* General case, no particular optimization. */ - const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left; - memcpy(sha_256->chunk_pos, p, consumed_len); - sha_256->space_left -= consumed_len; - len -= consumed_len; - p += consumed_len; - if (sha_256->space_left == 0) { - consume_chunk(sha_256->h, sha_256->chunk); - sha_256->chunk_pos = sha_256->chunk; - sha_256->space_left = SIZE_OF_SHA_256_CHUNK; - } else { - sha_256->chunk_pos += consumed_len; - } - } -} - -uint8_t *sha_256_close(struct Sha_256 *sha_256) -{ - uint8_t *pos = sha_256->chunk_pos; - size_t space_left = sha_256->space_left; - uint32_t *const h = sha_256->h; - - /* - * The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for - * at least one byte. The next step in the calculation is to add a single one-bit to the data. - */ - *pos++ = 0x80; - --space_left; - - /* - * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before - * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add - * an extra chunk at the end. - */ - if (space_left < TOTAL_LEN_LEN) { - memset(pos, 0x00, space_left); - consume_chunk(h, sha_256->chunk); - pos = sha_256->chunk; - space_left = SIZE_OF_SHA_256_CHUNK; - } - const size_t left = space_left - TOTAL_LEN_LEN; - memset(pos, 0x00, left); - pos += left; - size_t len = sha_256->total_len; - pos[7] = (uint8_t)(len << 3); - len >>= 5; - int i; - for (i = 6; i >= 0; --i) { - pos[i] = (uint8_t)len; - len >>= 8; - } - consume_chunk(h, sha_256->chunk); - /* Produce the final hash value (big-endian): */ - int j; - uint8_t *const hash = sha_256->hash; - for (i = 0, j = 0; i < 8; i++) { - hash[j++] = (uint8_t)(h[i] >> 24); - hash[j++] = (uint8_t)(h[i] >> 16); - hash[j++] = (uint8_t)(h[i] >> 8); - hash[j++] = (uint8_t)h[i]; - } - return sha_256->hash; -} - -void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len) -{ - struct Sha_256 sha_256; - sha_256_init(&sha_256, hash); - sha_256_write(&sha_256, input, len); - (void)sha_256_close(&sha_256); -} +#include "sha-256.h"
+
+#define TOTAL_LEN_LEN 8
+
+/*
+ * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
+ * When useful for clarification, portions of the pseudo-code are reproduced here too.
+ */
+
+/*
+ * @brief Rotate a 32-bit value by a number of bits to the right.
+ * @param value The value to be rotated.
+ * @param count The number of bits to rotate by.
+ * @return The rotated value.
+ */
+static inline uint32_t right_rot(uint32_t value, unsigned int count)
+{
+ /*
+ * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
+ */
+ return value >> count | value << (32 - count);
+}
+
+/*
+ * @brief Update a hash value under calculation with a new chunk of data.
+ * @param h Pointer to the first hash item, of a total of eight.
+ * @param p Pointer to the chunk data, which has a standard length.
+ *
+ * @note This is the SHA-256 work horse.
+ */
+static inline void consume_chunk(uint32_t *h, const uint8_t *p)
+{
+ unsigned i, j;
+ uint32_t ah[8];
+
+ /* Initialize working variables to current hash value: */
+ for (i = 0; i < 8; i++)
+ ah[i] = h[i];
+
+ /*
+ * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
+ * calculating 16 at a time.
+ *
+ * This optimization was not there initially and the rest of the comments about w[64] are kept in their
+ * initial state.
+ */
+
+ /*
+ * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
+ * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
+ * message schedule array
+ */
+ uint32_t w[16];
+
+ /* Compression function main loop: */
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 16; j++) {
+ if (i == 0) {
+ w[j] =
+ (uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
+ p += 4;
+ } else {
+ /* Extend the first 16 words into the remaining 48 words w[16..63] of the
+ * message schedule array: */
+ const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
+ (w[(j + 1) & 0xf] >> 3);
+ const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
+ right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
+ w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
+ }
+ const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
+ const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
+
+ /*
+ * Initialize array of round constants:
+ * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
+ */
+ static const uint32_t k[] = {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
+ 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
+ 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
+ 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
+ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
+ 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
+ 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
+ 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
+ 0xc67178f2};
+
+ const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
+ const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
+ const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
+ const uint32_t temp2 = s0 + maj;
+
+ ah[7] = ah[6];
+ ah[6] = ah[5];
+ ah[5] = ah[4];
+ ah[4] = ah[3] + temp1;
+ ah[3] = ah[2];
+ ah[2] = ah[1];
+ ah[1] = ah[0];
+ ah[0] = temp1 + temp2;
+ }
+ }
+
+ /* Add the compressed chunk to the current hash value: */
+ for (i = 0; i < 8; i++)
+ h[i] += ah[i];
+}
+
+/*
+ * Public functions. See header file for documentation.
+ */
+
+void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
+{
+ sha_256->hash = hash;
+ sha_256->chunk_pos = sha_256->chunk;
+ sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
+ sha_256->total_len = 0;
+ /*
+ * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
+ * 2..19):
+ */
+ sha_256->h[0] = 0x6a09e667;
+ sha_256->h[1] = 0xbb67ae85;
+ sha_256->h[2] = 0x3c6ef372;
+ sha_256->h[3] = 0xa54ff53a;
+ sha_256->h[4] = 0x510e527f;
+ sha_256->h[5] = 0x9b05688c;
+ sha_256->h[6] = 0x1f83d9ab;
+ sha_256->h[7] = 0x5be0cd19;
+}
+
+void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
+{
+ sha_256->total_len += len;
+
+ /*
+ * The following cast is not necessary, and could even be considered as poor practice. However, it makes this
+ * file valid C++, which could be a good thing for some use cases.
+ */
+ const uint8_t *p = (const uint8_t *)data;
+
+ while (len > 0) {
+ /*
+ * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
+ * necessary. We operate directly on the input data instead.
+ */
+ if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
+ consume_chunk(sha_256->h, p);
+ len -= SIZE_OF_SHA_256_CHUNK;
+ p += SIZE_OF_SHA_256_CHUNK;
+ continue;
+ }
+ /* General case, no particular optimization. */
+ const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
+ memcpy(sha_256->chunk_pos, p, consumed_len);
+ sha_256->space_left -= consumed_len;
+ len -= consumed_len;
+ p += consumed_len;
+ if (sha_256->space_left == 0) {
+ consume_chunk(sha_256->h, sha_256->chunk);
+ sha_256->chunk_pos = sha_256->chunk;
+ sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
+ } else {
+ sha_256->chunk_pos += consumed_len;
+ }
+ }
+}
+
+uint8_t *sha_256_close(struct Sha_256 *sha_256)
+{
+ uint8_t *pos = sha_256->chunk_pos;
+ size_t space_left = sha_256->space_left;
+ uint32_t *const h = sha_256->h;
+
+ /*
+ * The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for
+ * at least one byte. The next step in the calculation is to add a single one-bit to the data.
+ */
+ *pos++ = 0x80;
+ --space_left;
+
+ /*
+ * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
+ * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
+ * an extra chunk at the end.
+ */
+ if (space_left < TOTAL_LEN_LEN) {
+ memset(pos, 0x00, space_left);
+ consume_chunk(h, sha_256->chunk);
+ pos = sha_256->chunk;
+ space_left = SIZE_OF_SHA_256_CHUNK;
+ }
+ const size_t left = space_left - TOTAL_LEN_LEN;
+ memset(pos, 0x00, left);
+ pos += left;
+ size_t len = sha_256->total_len;
+ pos[7] = (uint8_t)(len << 3);
+ len >>= 5;
+ int i;
+ for (i = 6; i >= 0; --i) {
+ pos[i] = (uint8_t)len;
+ len >>= 8;
+ }
+ consume_chunk(h, sha_256->chunk);
+ /* Produce the final hash value (big-endian): */
+ int j;
+ uint8_t *const hash = sha_256->hash;
+ for (i = 0, j = 0; i < 8; i++) {
+ hash[j++] = (uint8_t)(h[i] >> 24);
+ hash[j++] = (uint8_t)(h[i] >> 16);
+ hash[j++] = (uint8_t)(h[i] >> 8);
+ hash[j++] = (uint8_t)h[i];
+ }
+ return sha_256->hash;
+}
+
+void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
+{
+ struct Sha_256 sha_256;
+ sha_256_init(&sha_256, hash);
+ sha_256_write(&sha_256, input, len);
+ (void)sha_256_close(&sha_256);
+}
|
