VexRiscv/README.md

224 lines
7.8 KiB
Markdown
Raw Normal View History

2017-03-26 16:38:07 -04:00
This repository host an RISC-V implementation written in SpinalHDL. There is some specs :
- RV32IM instruction set
- Interrupts and exception handling with the Machine mode from the riscv-privileged-v1.9.1 specification.
- Pipelined on 5 stages (Fetch, Decode, Execute, Memory, WriteBack)
- 1.17 DMIPS/Mhz with all extension
- Optimized for FPGA
- Optional MUL/DIV/REM extension
2017-05-19 11:13:33 -04:00
- Optional instruction and data caches
- Optional MMU
2017-03-26 16:38:07 -04:00
- Two implementation of shift instructions, Single cycle / shiftNumber cycle
- Each stage could have bypass or interlock hazard logic
- FreeRTOS port https://github.com/Dolu1990/FreeRTOS-RISCV
The hardware description of this CPU is done by using an very software oriented approach
(without any overhead in the generated hardware). There is a list of software concepts used :
- There is very few fixed things. Nearly everything is plugin based. The PC manager is a plugin, the register file is a plugin, the hazard controller is a plugin ...
- There is an automatic a tool which allow plugins to insert data in the pipeline at a given stage, and allow other plugins to read it in another stages through automatic pipelining.
- There is an service system which provide a very dynamic framework. As instance, a plugin could provide an exception service which could then be used by others plugins to emit exceptions from the pipeline.
2017-06-15 08:06:32 -04:00
## Dependencies
On Ubuntu 14 :
```sh
# JAVA JDK 7 or 8
sudo apt-get install openjdk-7-jdk
# SBT
echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/sbt.list
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823
sudo apt-get update
sudo apt-get install sbt
# Verilator (for sim only)
2017-06-15 14:27:20 -04:00
sudo apt-get install git make autoconf g++ flex bison
git clone http://git.veripool.org/git/verilator # Only first time
unsetenv VERILATOR_ROOT # For csh; ignore error if on bash
unset VERILATOR_ROOT # For bash
cd verilator
git pull # Make sure we're up-to-date
git tag # See what versions exist
autoconf # Create ./configure script
./configure
make
sudo make install
2017-06-15 08:06:32 -04:00
```
2017-03-26 18:33:34 -04:00
2017-06-15 07:44:21 -04:00
## CPU generation
You can find two example of CPU instantiation in :
- src/main/scala/VexRiscv/GenFull.scala
- src/main/scala/VexRiscv/GenSmallest.scala
2017-03-26 18:33:34 -04:00
2017-06-15 07:54:34 -04:00
To generate the corresponding RTL as a VexRiscv.v file, run (it could take time the first time you run it):
2017-06-15 07:44:21 -04:00
2017-07-09 12:02:01 -04:00
NOTE :
The VexRiscv could need the unreleased master-head of SpinalHDL. If it fail to compile, just get the SpinalHDL repository and do a "sbt publish-local" in it.
2017-06-15 07:44:21 -04:00
```sh
sbt "run-main VexRiscv.demo.GenFull"
2017-06-15 07:44:21 -04:00
# or
sbt "run-main VexRiscv.demo.GenSmallest"
2017-06-15 07:44:21 -04:00
```
## Tests
To run tests (need the verilator simulator), go in the src/test/cpp/regression folder and run :
```sh
# To test the GenFull CPU
make clean run
# To test the GenSmallest CPU
make clean run IBUS=IBUS_SIMPLE DBUS=DBUS_SIMPLE CSR=no MMU=no DEBUG_PLUGIN=no MUL=no DIV=no
```
## Interactive debug of the simulated CPU via GDB/OpenOCD in Verilator
It's as described to run tests, but you just have to add DEBUG_PLUGIN_EXTERNAL=yes in the make arguments.
Work for the GenFull, but not for the GenSmallest as this configuration has no debug module.
Then you can use the https://github.com/SpinalHDL/openocd_riscv tool to create a GDB server connected to the target (the simulated CPU)
```sh
#in the VexRiscv repository, to run the simulation on which one OpenOCD can connect itself =>
sbt "run-main VexRiscv.demo.GenFull"
cd src/test/cpp/regression
make run DEBUG_PLUGIN_EXTERNAL=yes
#In the openocd git, after building it =>
2017-06-15 07:44:21 -04:00
src/openocd -c "set VEXRISCV_YAML PATH_TO_THE_GENERATED_CPU0_YAML_FILE" -f tcl/target/vexriscv_sim.cfg
#Run a GDB session with an elf RISCV executable (GenFull CPU)
YourRiscvToolsPath/bin/riscv32-unknown-elf-gdb VexRiscvRepo/src/test/resources/elf/uart.elf
target remote localhost:3333
monitor reset halt
load
continue
# Now it should print messages in the Verilator simulation of the CPU
2017-03-26 18:33:34 -04:00
```
## Using eclipse to run the software and debug it
You can use the eclipse + zilin embedded CDT plugin to do it.
2017-03-26 18:33:34 -04:00
## Briey SoC
2017-07-09 12:02:01 -04:00
As a demonstrator, a SoC named Briey is implemented in src/main/scala/VexRiscv/demo/Briey.scala. This SoC is very similar to the Pinsec one :
2017-07-09 12:02:01 -04:00
<img src="http://cdn.rawgit.com/SpinalHDL/SpinalDoc/dd17971aa549ccb99168afd55aad274bbdff1e88/asset/picture/pinsec_hardware.svg" align="middle" width="300">
2017-07-09 12:02:01 -04:00
To generate the Briey SoC Hardware :
```sh
sbt "run-main VexRiscv.demo.Briey"
```
To run the verilator simulation of the Briey SoC which can be then connected to OpenOCD/GDB, first get those dependencies :
```sh
sudo apt-get install build-essential xorg-dev libudev-dev libts-dev libgl1-mesa-dev libglu1-mesa-dev libasound2-dev libpulse-dev libopenal-dev libogg-dev libvorbis-dev libaudiofile-dev libpng12-dev libfreetype6-dev libusb-dev libdbus-1-dev zlib1g-dev libdirectfb-dev libsdl2-dev
```
Then go in src/test/cpp/briey and run the simulation with (UART TX is printed in the terminal, VGA is displayed in a GUI):
```sh
make clean run
```
2017-07-09 12:02:01 -04:00
To connect OpenOCD (https://github.com/SpinalHDL/openocd_riscv) to the simulation :
```sh
src/openocd -f tcl/interface/jtag_tcp.cfg -c "set BRIEY_CPU0_YAML /home/spinalvm/Spinal/VexRiscv/cpu0.yaml" -f tcl/target/briey.cfg
```
You can find multiples software examples and demo there : https://github.com/SpinalHDL/BrieySoftware
## Build the RISC-V GCC
To install in /opt/ the rv32i and rv32im gcc, do the following (will take hours):
```sh
# Be carefull, sometime the git clone has issue to successfully clone riscv-gnu-toolchain.
sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev -y
git clone --recursive https://github.com/riscv/riscv-gnu-toolchain riscv-gnu-toolchain
cd riscv-gnu-toolchain
echo "Starting RISC-V Toolchain build process"
ARCH=rv32im
rmdir -rf $ARCH
mkdir $ARCH; cd $ARCH
../configure --prefix=/opt/$ARCH --with-arch=$ARCH --with-abi=ilp32
sudo make -j4
cd ..
ARCH=rv32i
rmdir -rf $ARCH
mkdir $ARCH; cd $ARCH
../configure --prefix=/opt/$ARCH --with-arch=$ARCH --with-abi=ilp32
sudo make -j4
cd ..
echo -e "\\nRISC-V Toolchain installation completed!"
```
2017-06-15 07:44:21 -04:00
## Cpu plugin structure
2017-03-26 16:38:07 -04:00
2017-03-26 18:33:34 -04:00
There is an example of an pseudo ALU plugin :
2017-03-26 16:38:07 -04:00
```scala
//Define an signal name/type which could be used in the pipeline
object ALU_ENABLE extends Stageable(Bool)
2017-03-26 16:43:00 -04:00
object ALU_OP extends Stageable(Bits(2 bits)) // ADD, SUB, AND, OR
2017-03-26 16:38:07 -04:00
object ALU_SRC1 extends Stageable(UInt(32 bits))
object ALU_SRC2 extends Stageable(UInt(32 bits))
object ALU_RESULT extends Stageable(UInt(32 bits))
class AluPlugin() extends Plugin[VexRiscv]{
2017-03-26 16:43:00 -04:00
//Callback to setup the plugin and ask for different services
2017-03-26 16:38:07 -04:00
override def setup(pipeline: VexRiscv): Unit = {
import pipeline.config._
//Do some setups as for example specifying some instruction decoding by using the Decoding service
val decoderService = pipeline.service(classOf[DecoderService])
decoderService.addDefault(ALU_ENABLE,False)
decodingService.add(List(
2017-03-26 16:43:00 -04:00
M"0100----------" -> List(ALU_ENABLE -> True, ALU_OP -> B"01"),
M"0110---11-----" -> List(ALU_ENABLE -> True, ...)
2017-03-26 16:38:07 -04:00
))
}
2017-03-26 16:43:00 -04:00
//Callback to build the hardware logic
2017-03-26 16:38:07 -04:00
override def build(pipeline: VexRiscv): Unit = {
import pipeline._
execute plug new Area {
import execute._
//Add some logic in the execute stage
insert(ALU_RESULT) := input(ALU_OP).mux(
B"00" -> input(ALU_SRC1) + input(ALU_SRC2),
B"01" -> input(ALU_SRC1) - input(ALU_SRC2),
B"10" -> input(ALU_SRC1) & input(ALU_SRC2),
B"11" -> input(ALU_SRC1) | input(ALU_SRC2),
)
}
writeBack plug new Area {
import writeBack._
//Add some logic in the execute stage
when(input(ALU_ENABLE)){
input(REGFILE_WRITE_DATA) := input(ALU_RESULT)
}
}
}
}
2017-05-19 11:13:33 -04:00
```