litedram/test/run_benchmarks.py

543 lines
21 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# This file is Copyright (c) 2020 Jędrzej Boczar <jboczar@antmicro.com>
# License: BSD
# Limitations/TODO
# - add configurable sdram_clk_freq - using hardcoded value now
# - sdram_controller_data_width - try to expose the value from litex_sim to avoid duplicated code
import os
import re
import sys
import json
import argparse
import subprocess
from collections import defaultdict, namedtuple
import yaml
try:
import numpy as np
import pandas as pd
import matplotlib
from matplotlib.ticker import FuncFormatter, PercentFormatter, ScalarFormatter
_summary = True
except ImportError as e:
_summary = False
print('[WARNING] Results summary not available:', e, file=sys.stderr)
from litex.tools.litex_sim import get_sdram_phy_settings, sdram_module_nphases
from litedram import modules as litedram_modules
from litedram.common import Settings as _Settings
from . import benchmark
from .benchmark import load_access_pattern
# Benchmark configuration --------------------------------------------------------------------------
class Settings(_Settings):
def as_dict(self):
d = dict()
for attr, value in vars(self).items():
if attr == 'self' or attr.startswith('_'):
continue
if isinstance(value, Settings):
value = value.as_dict()
d[attr] = value
return d
class GeneratedAccess(Settings):
def __init__(self, bist_length, bist_random):
self.set_attributes(locals())
@property
def length(self):
return self.bist_length
def as_args(self):
args = ['--bist-length=%d' % self.bist_length]
if self.bist_random:
args.append('--bist-random')
return args
class CustomAccess(Settings):
def __init__(self, pattern_file):
self.set_attributes(locals())
@property
def pattern(self):
# we have to load the file to know pattern length, cache it when requested
if not hasattr(self, '_pattern'):
path = self.pattern_file
if not os.path.isabs(path):
benchmark_dir = os.path.dirname(benchmark.__file__)
path = os.path.join(benchmark_dir, path)
self._pattern = load_access_pattern(path)
return self._pattern
@property
def length(self):
return len(self.pattern)
def as_args(self):
return ['--access-pattern=%s' % self.pattern_file]
class BenchmarkConfiguration(Settings):
def __init__(self, name, sdram_module, sdram_data_width, access_pattern):
self.set_attributes(locals())
def as_args(self):
args = [
'--sdram-module=%s' % self.sdram_module,
'--sdram-data-width=%d' % self.sdram_data_width,
]
args += self.access_pattern.as_args()
return args
def __eq__(self, other):
if not isinstance(other, BenchmarkConfiguration):
return NotImplemented
return self.as_dict() == other.as_dict()
@property
def length(self):
return self.access_pattern.length
@classmethod
def from_dict(cls, d):
access_cls = CustomAccess if 'pattern_file' in d['access_pattern'] else GeneratedAccess
d['access_pattern'] = access_cls(**d['access_pattern'])
return cls(**d)
@classmethod
def load_yaml(cls, yaml_file):
with open(yaml_file) as f:
description = yaml.safe_load(f)
configs = []
for name, desc in description.items():
desc['name'] = name
configs.append(cls.from_dict(desc))
return configs
def __repr__(self):
return 'BenchmarkConfiguration(%s)' % self.as_dict()
@property
def sdram_clk_freq(self):
return 100e6 # FIXME: value of 100MHz is hardcoded in litex_sim
@property
def sdram_controller_data_width(self):
# use values from module class (no need to instantiate it)
sdram_module_cls = getattr(litedram_modules, self.sdram_module)
memtype = sdram_module_cls.memtype
nphases = sdram_module_nphases[memtype]
dfi_databits = self.sdram_data_width * (1 if memtype == 'SDR' else 2)
return dfi_databits * nphases
# Benchmark results --------------------------------------------------------------------------------
# constructs python regex named group
def ng(name, regex):
return r'(?P<{}>{})'.format(name, regex)
def _compiled_pattern(stage, var):
pattern_fmt = r'{stage}\s+{var}:\s+{value}'
pattern = pattern_fmt.format(
stage=stage,
var=var,
value=ng('value', '[0-9]+'),
)
return re.compile(pattern)
result = re.search(pattern, benchmark_output)
class BenchmarkResult:
# pre-compiled patterns for all benchmarks
patterns = {
'generator_ticks': _compiled_pattern('BIST-GENERATOR', 'ticks'),
'checker_errors': _compiled_pattern('BIST-CHECKER', 'errors'),
'checker_ticks': _compiled_pattern('BIST-CHECKER', 'ticks'),
}
@staticmethod
def find(pattern, output):
result = pattern.search(output)
assert result is not None, \
'Could not find pattern "%s" in output' % (pattern)
return int(result.group('value'))
def __init__(self, output):
self._output = output
for attr, pattern in self.patterns.items():
setattr(self, attr, self.find(pattern, output))
def __repr__(self):
d = {attr: getattr(self, attr) for attr in self.patterns.keys()}
return 'BenchmarkResult(%s)' % d
# Results summary ----------------------------------------------------------------------------------
def human_readable(value):
binary_prefixes = ['', 'k', 'M', 'G', 'T']
mult = 1.0
for prefix in binary_prefixes:
if value * mult < 1024:
break
mult /= 1024
return mult, prefix
def clocks_fmt(clocks):
return '{:d} clk'.format(int(clocks))
def bandwidth_fmt(bw):
mult, prefix = human_readable(bw)
return '{:.1f} {}bps'.format(bw * mult, prefix)
def efficiency_fmt(eff):
return '{:.1f} %'.format(eff * 100)
class ResultsSummary:
def __init__(self, run_data, plots_dir='plots'):
self.plots_dir = plots_dir
# filter out failures
self.failed_configs = [data.config for data in run_data if data.result is None]
run_data = [data for data in run_data if data.result is not None]
# gather results into tabular data
column_mappings = {
'name': lambda d: d.config.name,
'sdram_module': lambda d: d.config.sdram_module,
'sdram_data_width': lambda d: d.config.sdram_data_width,
'bist_length': lambda d: getattr(d.config.access_pattern, 'bist_length', None),
'bist_random': lambda d: getattr(d.config.access_pattern, 'bist_random', None),
'pattern_file': lambda d: getattr(d.config.access_pattern, 'pattern_file', None),
'length': lambda d: d.config.length,
'generator_ticks': lambda d: d.result.generator_ticks,
'checker_errors': lambda d: d.result.checker_errors,
'checker_ticks': lambda d: d.result.checker_ticks,
'ctrl_data_width': lambda d: d.config.sdram_controller_data_width,
'clk_freq': lambda d: d.config.sdram_clk_freq,
}
columns = {name: [mapping(data) for data in run_data] for name, mapping, in column_mappings.items()}
self.df = df = pd.DataFrame(columns)
# replace None with NaN
df.fillna(value=np.nan, inplace=True)
# compute other metrics based on ticks and configuration parameters
df['clk_period'] = 1 / df['clk_freq']
df['write_bandwidth'] = (8 * df['length']) / (df['generator_ticks'] * df['clk_period'])
df['read_bandwidth'] = (8 * df['length']) / (df['checker_ticks'] * df['clk_period'])
df['cmd_count'] = df['length'] / (df['ctrl_data_width'] / 8)
df['write_efficiency'] = df['cmd_count'] / df['generator_ticks']
df['read_efficiency'] = df['cmd_count'] / df['checker_ticks']
df['write_latency'] = df[df['bist_length'] == 1]['generator_ticks']
df['read_latency'] = df[df['bist_length'] == 1]['checker_ticks']
# boolean distinction between latency benchmarks and sequence benchmarks,
# as thier results differ significanly
df['is_latency'] = ~pd.isna(df['write_latency'])
assert (df['is_latency'] == ~pd.isna(df['read_latency'])).all(), \
'write_latency and read_latency should both have a value or both be NaN'
# data formatting for text summary
self.text_formatters = {
'write_bandwidth': bandwidth_fmt,
'read_bandwidth': bandwidth_fmt,
'write_efficiency': efficiency_fmt,
'read_efficiency': efficiency_fmt,
'write_latency': clocks_fmt,
'read_latency': clocks_fmt,
}
# data formatting for plot summary
self.plot_xticks_formatters = {
'write_bandwidth': FuncFormatter(lambda value, pos: bandwidth_fmt(value)),
'read_bandwidth': FuncFormatter(lambda value, pos: bandwidth_fmt(value)),
'write_efficiency': PercentFormatter(1.0),
'read_efficiency': PercentFormatter(1.0),
'write_latency': ScalarFormatter(),
'read_latency': ScalarFormatter(),
}
def header(self, text):
return '===> {}'.format(text)
def print_df(self, title, df):
# make sure all data will be shown
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
print(self.header(title + ':'))
print(df)
def get_summary(self, mask=None, columns=None, column_formatting=None, sort_kwargs=None):
# work on a copy
df = self.df.copy()
if sort_kwargs is not None:
df = df.sort_values(**sort_kwargs)
if column_formatting is not None:
for column, mapping in column_formatting.items():
old = '_{}'.format(column)
df[old] = df[column].copy()
df[column] = df[column].map(lambda value: mapping(value) if not pd.isna(value) else value)
df = df[mask] if mask is not None else df
df = df[columns] if columns is not None else df
return df
def text_summary(self):
for title, df in self.groupped_results():
self.print_df(title, df)
print()
def groupped_results(self, formatted=True):
df = self.df
formatters = self.text_formatters if formatted else {}
common_columns = ['name', 'sdram_module', 'sdram_data_width']
latency_columns = ['write_latency', 'read_latency']
performance_columns = ['write_bandwidth', 'read_bandwidth', 'write_efficiency', 'read_efficiency']
yield 'Latency', self.get_summary(
mask=df['is_latency'] == True,
columns=common_columns + latency_columns,
column_formatting=formatters,
)
# yield 'Any access pattern', self.get_summary(
# mask=(df['is_latency'] == False),
# columns=common_columns + performance_columns + ['length', 'bist_random', 'pattern_file'],
# column_formatting=self.text_formatters,
# **kwargs,
# ),
yield 'Custom access pattern', self.get_summary(
mask=(df['is_latency'] == False) & (~pd.isna(df['pattern_file'])),
columns=common_columns + performance_columns + ['length', 'pattern_file'],
column_formatting=formatters,
),
yield 'Sequential access pattern', self.get_summary(
mask=(df['is_latency'] == False) & (pd.isna(df['pattern_file'])) & (df['bist_random'] == False),
columns=common_columns + performance_columns + ['bist_length'], # could be length
column_formatting=formatters,
),
yield 'Random access pattern', self.get_summary(
mask=(df['is_latency'] == False) & (pd.isna(df['pattern_file'])) & (df['bist_random'] == True),
columns=common_columns + performance_columns + ['bist_length'],
column_formatting=formatters,
),
def plot_summary(self, plots_dir='plots', backend='Agg', theme='default', save_format='png', **savefig_kw):
matplotlib.use(backend)
import matplotlib.pyplot as plt
plt.style.use(theme)
for title, df in self.groupped_results(formatted=False):
for column in self.plot_xticks_formatters.keys():
if column not in df.columns or df[column].empty:
continue
axis = self.plot_df(title, df, column)
# construct path
def path_name(name):
return name.lower().replace(' ', '_')
filename = '{}.{}'.format(path_name(column), save_format)
path = os.path.join(plots_dir, path_name(title), filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
# save figure
axis.get_figure().savefig(path, **savefig_kw)
if backend != 'Agg':
plt.show()
2020-01-30 04:49:52 -05:00
def plot_df(self, title, df, column, fig_width=6.4, fig_min_height=2.2, save_format='png', save_filename=None):
if save_filename is None:
save_filename = os.path.join(self.plots_dir, title.lower().replace(' ', '_'))
axis = df.plot(kind='barh', x='name', y=column, title=title, grid=True, legend=False)
fig = axis.get_figure()
if column in self.plot_xticks_formatters:
axis.xaxis.set_major_formatter(self.plot_xticks_formatters[column])
axis.xaxis.set_tick_params(rotation=15)
axis.spines['top'].set_visible(False)
axis.spines['right'].set_visible(False)
axis.set_axisbelow(True)
axis.set_ylabel('') # no need for label as we have only one series
# for large number of rows, the bar labels start overlapping
# use fixed ratio between number of rows and height of figure
n_ok = 16
new_height = (fig_width / n_ok) * len(df)
fig.set_size_inches(fig_width, max(fig_min_height, new_height))
# remove empty spaces
fig.tight_layout()
return axis
def failures_summary(self):
if len(self.failed_configs) > 0:
print(self.header('Failures:'))
for config in self.failed_configs:
print(' {}: {}'.format(config.name, config.as_args()))
else:
print(self.header('All benchmarks ok.'))
# Run ----------------------------------------------------------------------------------------------
class RunCache(list):
RunData = namedtuple('RunData', ['config', 'result'])
def dump_json(self, filename):
json_data = [{'config': data.config.as_dict(), 'output': getattr(data.result, '_output', None) } for data in self]
with open(filename, 'w') as f:
json.dump(json_data, f)
@classmethod
def load_json(cls, filename):
with open(filename, 'r') as f:
json_data = json.load(f)
loaded = []
for data in json_data:
config = BenchmarkConfiguration.from_dict(data['config'])
result = BenchmarkResult(data['output']) if data['output'] is not None else None
loaded.append(cls.RunData(config=config, result=result))
return loaded
def run_python(script, args):
command = ['python3', script, *args]
proc = subprocess.run(command, stdout=subprocess.PIPE, cwd=os.path.dirname(script))
return str(proc.stdout)
2020-01-30 04:49:52 -05:00
def run_single_benchmark(func_args):
config, output_dir, ignore_failures = func_args
# run as separate process, because else we cannot capture all output from verilator
print(' {}: {}'.format(config.name, ' '.join(config.as_args())))
try:
output = run_python(benchmark.__file__, config.as_args() + ['--output-dir', output_dir])
result = BenchmarkResult(output)
# exit if checker had any read error
if result.checker_errors != 0:
raise RuntimeError('Error during benchmark: checker_errors = {}, args = {}'.format(
result.checker_errors, args
))
except Exception as e:
if ignore_failures:
print(' {}: ERROR: {}'.format(config.name, e))
return None
else:
raise
print(' {}: ok'.format(config.name))
return result
def run_benchmarks(configurations, output_base_dir, njobs, ignore_failures):
print('Running {:d} benchmarks ...'.format(len(configurations)))
if njobs == 1:
results = [run_single_benchmark((config, output_base_dir, ignore_failures)) for config in configurations]
else:
import multiprocessing
func_args = [(config, os.path.join(output_base_dir, config.name.replace(' ', '_')), ignore_failures)
for config in configurations]
if njobs == 0:
njobs = os.cpu_count()
print('Using {:d} parallel jobs'.format(njobs))
with multiprocessing.Pool(processes=njobs) as pool:
results = pool.map(run_single_benchmark, func_args)
run_data = [RunCache.RunData(config, result) for config, result in zip(configurations, results)]
return run_data
def main(argv=None):
parser = argparse.ArgumentParser(
description='Run LiteDRAM benchmarks and collect the results.')
parser.add_argument("config", help="YAML config file")
parser.add_argument('--names', nargs='*', help='Limit benchmarks to given names')
parser.add_argument('--regex', help='Limit benchmarks to names matching the regex')
parser.add_argument('--not-regex', help='Limit benchmarks to names not matching the regex')
parser.add_argument('--plot', action='store_true', help='Generate plots with results summary')
parser.add_argument('--plot-format', default='png', help='Specify plots file format (default=png)')
parser.add_argument('--plot-backend', default='Agg', help='Optionally specify matplotlib GUI backend')
parser.add_argument('--plot-transparent', action='store_true', help='Use transparent background when saving plots')
parser.add_argument('--plot-output-dir', default='plots', help='Specify where to save the plots')
parser.add_argument('--plot-theme', default='default', help='Use different matplotlib theme')
parser.add_argument('--fail-fast', action='store_true', help='Exit on any benchmark error, do not continue')
parser.add_argument('--output-dir', default='build', help='Directory to store benchmark build output')
parser.add_argument('--njobs', default=0, type=int, help='Use N parallel jobs to run benchmarks (default=0, which uses CPU count)')
parser.add_argument('--results-cache', help="""Use given JSON file as results cache. If the file exists,
it will be loaded instead of running actual benchmarks,
else benchmarks will be run normally, and then saved
to the given file. This allows to easily rerun the script
to generate different summary without having to rerun benchmarks.""")
args = parser.parse_args(argv)
if not args.results_cache and not _summary:
print('Summary not available and not running with --results-cache - run would not produce any results! Aborting.',
file=sys.stderr)
sys.exit(1)
# load and filter configurations
configurations = BenchmarkConfiguration.load_yaml(args.config)
filters = {
'regex': lambda config: re.search(args.regex, config.name),
'not_regex': lambda config: not re.search(args.not_regex, config.name),
'names': lambda config: config.name in args.names,
}
for arg, f in filters.items():
if getattr(args, arg):
configurations = filter(f, configurations)
configurations = list(configurations)
# load outputs from cache if it exsits
cache_exists = args.results_cache and os.path.isfile(args.results_cache)
if args.results_cache and cache_exists:
cache = RunCache.load_json(args.results_cache)
# take only those that match configurations
names_to_load = [c.name for c in configurations]
run_data = [data for data in cache if data.config.name in names_to_load]
else: # run all the benchmarks normally
run_data = run_benchmarks(configurations, args.output_dir, args.njobs, not args.fail_fast)
# store outputs in cache
if args.results_cache and not cache_exists:
cache = RunCache(run_data)
cache.dump_json(args.results_cache)
# display summary
if _summary:
summary = ResultsSummary(run_data)
summary.text_summary()
summary.failures_summary()
if args.plot:
summary.plot_summary(
plots_dir=args.plot_output_dir,
backend=args.plot_backend,
theme=args.plot_theme,
save_format=args.plot_format,
transparent=args.plot_transparent,
)
if __name__ == "__main__":
main()