litex/migen/fhdl/verilog.py

299 lines
8.3 KiB
Python

from functools import partial
from operator import itemgetter
from migen.fhdl.structure import *
from migen.fhdl.structure import _Operator, _Slice, _Assign
from migen.fhdl.tools import *
from migen.fhdl.namer import Namespace, build_namespace
from migen.fhdl import verilog_mem_behavioral
def _printsig(ns, s):
if s.signed:
n = "signed "
else:
n = ""
if len(s) > 1:
n += "[" + str(len(s)-1) + ":0] "
n += ns.get_name(s)
return n
def _printintbool(node):
if isinstance(node, bool):
if node:
return "1'd1"
else:
return "1'd0"
elif isinstance(node, int):
if node >= 0:
return str(bits_for(node)) + "'d" + str(node)
else:
return "-" + str(bits_for(node)) + "'sd" + str(-node)
else:
raise TypeError
def _printexpr(ns, node):
if isinstance(node, (int, bool)):
return _printintbool(node)
elif isinstance(node, Signal):
return ns.get_name(node)
elif isinstance(node, _Operator):
arity = len(node.operands)
if arity == 1:
r = node.op + _printexpr(ns, node.operands[0])
elif arity == 2:
r = _printexpr(ns, node.operands[0]) + " " + node.op + " " + _printexpr(ns, node.operands[1])
else:
raise TypeError
return "(" + r + ")"
elif isinstance(node, _Slice):
# Verilog does not like us slicing non-array signals...
if isinstance(node.value, Signal) \
and len(node.value) == 1 \
and node.start == 0 and node.stop == 1:
return _printexpr(ns, node.value)
if node.start + 1 == node.stop:
sr = "[" + str(node.start) + "]"
else:
sr = "[" + str(node.stop-1) + ":" + str(node.start) + "]"
return _printexpr(ns, node.value) + sr
elif isinstance(node, Cat):
l = list(map(partial(_printexpr, ns), node.l))
l.reverse()
return "{" + ", ".join(l) + "}"
elif isinstance(node, Replicate):
return "{" + str(node.n) + "{" + _printexpr(ns, node.v) + "}}"
else:
raise TypeError
(_AT_BLOCKING, _AT_NONBLOCKING, _AT_SIGNAL) = range(3)
def _printnode(ns, at, level, node):
if node is None:
return ""
elif isinstance(node, _Assign):
if at == _AT_BLOCKING:
assignment = " = "
elif at == _AT_NONBLOCKING:
assignment = " <= "
elif is_variable(node.l):
assignment = " = "
else:
assignment = " <= "
return "\t"*level + _printexpr(ns, node.l) + assignment + _printexpr(ns, node.r) + ";\n"
elif isinstance(node, list):
return "".join(list(map(partial(_printnode, ns, at, level), node)))
elif isinstance(node, If):
r = "\t"*level + "if (" + _printexpr(ns, node.cond) + ") begin\n"
r += _printnode(ns, at, level + 1, node.t)
if node.f:
r += "\t"*level + "end else begin\n"
r += _printnode(ns, at, level + 1, node.f)
r += "\t"*level + "end\n"
return r
elif isinstance(node, Case):
if node.cases:
r = "\t"*level + "case (" + _printexpr(ns, node.test) + ")\n"
css = sorted([(k, v) for (k, v) in node.cases.items() if k != "default"], key=itemgetter(0))
for choice, statements in css:
r += "\t"*(level + 1) + _printexpr(ns, choice) + ": begin\n"
r += _printnode(ns, at, level + 2, statements)
r += "\t"*(level + 1) + "end\n"
if "default" in node.cases:
r += "\t"*(level + 1) + "default: begin\n"
r += _printnode(ns, at, level + 2, node.cases["default"])
r += "\t"*(level + 1) + "end\n"
r += "\t"*level + "endcase\n"
return r
else:
return ""
else:
raise TypeError
def _list_comb_wires(f):
r = set()
groups = group_by_targets(f.comb)
for g in groups:
if len(g[1]) == 1 and isinstance(g[1][0], _Assign):
r |= g[0]
return r
def _printheader(f, ios, name, ns):
sigs = list_signals(f) | list_inst_ios(f, True, True, True) | list_mem_ios(f, True, True)
inst_mem_outs = list_inst_ios(f, False, True, False) | list_mem_ios(f, False, True)
inouts = list_inst_ios(f, False, False, True)
targets = list_targets(f) | inst_mem_outs
wires = _list_comb_wires(f) | inst_mem_outs
r = "module " + name + "(\n"
firstp = True
for sig in sorted(ios, key=lambda x: x.huid):
if not firstp:
r += ",\n"
firstp = False
if sig in inouts:
r += "\tinout " + _printsig(ns, sig)
elif sig in targets:
if sig in wires:
r += "\toutput " + _printsig(ns, sig)
else:
r += "\toutput reg " + _printsig(ns, sig)
else:
r += "\tinput " + _printsig(ns, sig)
r += "\n);\n\n"
for sig in sorted(sigs - ios, key=lambda x: x.huid):
if sig in wires:
r += "wire " + _printsig(ns, sig) + ";\n"
else:
r += "reg " + _printsig(ns, sig) + ";\n"
r += "\n"
return r
def _printcomb(f, ns, display_run):
r = ""
if f.comb:
# Generate a dummy event to get the simulator
# to run the combinatorial process once at the beginning.
syn_off = "// synthesis translate off\n"
syn_on = "// synthesis translate on\n"
dummy_s = Signal(name_override="dummy_s")
r += syn_off
r += "reg " + _printsig(ns, dummy_s) + ";\n"
r += "initial " + ns.get_name(dummy_s) + " <= 1'd0;\n"
r += syn_on
groups = group_by_targets(f.comb)
for n, g in enumerate(groups):
if len(g[1]) == 1 and isinstance(g[1][0], _Assign):
r += "assign " + _printnode(ns, _AT_BLOCKING, 0, g[1][0])
else:
dummy_d = Signal(name_override="dummy_d")
r += "\n" + syn_off
r += "reg " + _printsig(ns, dummy_d) + ";\n"
r += syn_on
r += "always @(*) begin\n"
if display_run:
r += "\t$display(\"Running comb block #" + str(n) + "\");\n"
for t in g[0]:
r += "\t" + ns.get_name(t) + " <= " + _printexpr(ns, t.reset) + ";\n"
r += _printnode(ns, _AT_NONBLOCKING, 1, g[1])
r += syn_off
r += "\t" + ns.get_name(dummy_d) + " <= " + ns.get_name(dummy_s) + ";\n"
r += syn_on
r += "end\n"
r += "\n"
return r
def _printsync(f, ns, clock_domains):
r = ""
for k, v in sorted(f.sync.items(), key=itemgetter(0)):
r += "always @(posedge " + ns.get_name(clock_domains[k].clk) + ") begin\n"
r += _printnode(ns, _AT_SIGNAL, 1, insert_reset(clock_domains[k].rst, v))
r += "end\n\n"
return r
def _printinstances(f, ns, clock_domains):
r = ""
for x in f.instances:
parameters = list(filter(lambda i: isinstance(i, Instance.Parameter), x.items))
r += x.of + " "
if parameters:
r += "#(\n"
firstp = True
for p in parameters:
if not firstp:
r += ",\n"
firstp = False
r += "\t." + p.name + "("
if isinstance(p.value, (int, bool)):
r += _printintbool(p.value)
elif isinstance(p.value, float):
r += str(p.value)
elif isinstance(p.value, str):
r += "\"" + p.value + "\""
else:
raise TypeError
r += ")"
r += "\n) "
r += ns.get_name(x)
if parameters: r += " "
r += "(\n"
firstp = True
for p in x.items:
if isinstance(p, Instance._IO):
name_inst = p.name
name_design = _printexpr(ns, p.expr)
elif isinstance(p, Instance.ClockPort):
name_inst = p.name_inst
name_design = ns.get_name(clock_domains[p.domain].clk)
if p.invert:
name_design = "~" + name_design
elif isinstance(p, Instance.ResetPort):
name_inst = p.name_inst
name_design = ns.get_name(clock_domains[p.domain].rst)
else:
continue
if not firstp:
r += ",\n"
firstp = False
r += "\t." + name_inst + "(" + name_design + ")"
if not firstp:
r += "\n"
r += ");\n\n"
return r
def _printmemories(f, ns, handler, clock_domains):
r = ""
for memory in f.memories:
r += handler(memory, ns, clock_domains)
return r
def _printinit(f, ios, ns):
r = ""
signals = list_signals(f) \
- ios \
- list_targets(f) \
- list_inst_ios(f, False, True, False) \
- list_mem_ios(f, False, True)
if signals:
r += "initial begin\n"
for s in sorted(signals, key=lambda x: x.huid):
r += "\t" + ns.get_name(s) + " <= " + _printexpr(ns, s.reset) + ";\n"
r += "end\n\n"
return r
def convert(f, ios=set(), name="top",
clock_domains=None,
return_ns=False,
memory_handler=verilog_mem_behavioral.handler,
display_run=False):
if clock_domains is None:
clock_domains = dict()
for d in f.get_clock_domains():
cd = ClockDomain(d)
clock_domains[d] = cd
ios.add(cd.clk)
ios.add(cd.rst)
f = lower_arrays(f)
ns = build_namespace(list_signals(f) \
| list_inst_ios(f, True, True, True) \
| list_mem_ios(f, True, True) \
| ios)
r = "/* Machine-generated using Migen */\n"
r += _printheader(f, ios, name, ns)
r += _printcomb(f, ns, display_run)
r += _printsync(f, ns, clock_domains)
r += _printinstances(f, ns, clock_domains)
r += _printmemories(f, ns, memory_handler, clock_domains)
r += _printinit(f, ios, ns)
r += "endmodule\n"
if return_ns:
return r, ns
else:
return r