upsilon/firmware/rtl/base/base.v.m4

371 lines
10 KiB
Plaintext

m4_changequote(`⟨', `⟩')
m4_changecom(⟨/*⟩, ⟨*/⟩)
m4_define(generate_macro, ⟨m4_define(M4_$1, $2)⟩)
m4_include(../control_loop/control_loop_cmds.m4)
/* Since yosys only allows for standard Verilog (no system verilog),
* arrays (which would make everything much cleaner) cannot be used.
* A preprocessor is used instead, and M4 is used because it is much
* cleaner than the Verilog preprocessor (which is bad).
*/
/*********************************************************/
/********************** M4 macros ************************/
/*********************************************************/
/* This macro is used in the module declaration.
* The first argument is the number of wires the select switch must
* support (2 for most DACs, 3 for the control loop DAC).
* The second argument is the DAC number.
*/
m4_define(m4_dac_wires, ⟨
input [$1-1:0] dac_sel_$2,
output dac_finished_$2,
input dac_arm_$2,
output [DAC_WID-1:0] from_dac_$2,
input [DAC_WID-1:0] to_dac_$2,
input wf_arm_$2,
input wf_halt_on_finish_$2,
output wf_finished_$2,
input [WF_TIMER_WID-1:0] wf_time_to_wait_$2,
input wf_refresh_start_$2,
input [WF_RAM_WID-1:0] wf_start_addr_$2,
output wf_refresh_finished_$2,
output wf_running_$2,
output [WF_RAM_WID-1:0] wf_ram_dma_addr_$2,
input [WF_RAM_WORD_WID-1:0] wf_ram_word_$2,
output wf_ram_read_$2,
input wf_ram_valid_$2
⟩)
/* Same thing but for ADCs */
m4_define(m4_adc_wires, ⟨
input [$3-1:0] adc_sel_$2,
output adc_finished_$2,
input adc_arm_$2,
output [$1-1:0] from_adc_$2
⟩)
/* This is used in the body of the module. It declares the interconnect
* for each DAC. The first argument is the amount of switch ports the
* DAC requires (2 for most DACs, 3 for the control loop DAC). The
* second argument is the DAC number.
*/
m4_define(m4_dac_switch, ⟨
wire [$1-1:0] mosi_port_$2;
wire [$1-1:0] miso_port_$2;
wire [$1-1:0] sck_port_$2;
wire [$1-1:0] ss_L_port_$2;
spi_switch #(
.PORTS($1)
) switch_$2 (
.select(dac_sel_$2),
.mosi(dac_mosi[$2]),
.miso(dac_miso[$2]),
.sck(dac_sck[$2]),
.ss_L(dac_ss_L[$2]),
.mosi_ports(mosi_port_$2),
.miso_ports(miso_port_$2),
.sck_ports(sck_port_$2),
.ss_L_ports(ss_L_port_$2)
);
spi_master_ss #(
.WID(DAC_WID),
.WID_LEN(DAC_WID_SIZ),
.CYCLE_HALF_WAIT(DAC_CYCLE_HALF_WAIT),
.TIMER_LEN(DAC_CYCLE_HALF_WAIT_SIZ),
.POLARITY(DAC_POLARITY),
.PHASE(DAC_PHASE),
.SS_WAIT(DAC_SS_WAIT),
.SS_WAIT_TIMER_LEN(DAC_SS_WAIT_SIZ)
) dac_master_$2 (
.clk(clk),
.rst_L(rst_L),
.mosi(mosi_port_$2[0]),
.miso(miso_port_$2[0]),
.sck_wire(sck_port_$2[0]),
.ss_L(ss_L_port_$2[0]),
.finished(dac_finished_$2),
.arm(dac_arm_$2),
.from_slave(from_dac_$2),
.to_slave(to_dac_$2)
);
waveform #(
.DAC_WID(DAC_WID),
.DAC_WID_SIZ(DAC_WID_SIZ),
.DAC_POLARITY(DAC_POLARITY),
.DAC_PHASE(DAC_PHASE),
.DAC_CYCLE_HALF_WAIT(DAC_CYCLE_HALF_WAIT),
.DAC_CYCLE_HALF_WAIT_SIZ(DAC_CYCLE_HALF_WAIT_SIZ),
.DAC_SS_WAIT(DAC_SS_WAIT),
.DAC_SS_WAIT_SIZ(DAC_SS_WAIT_SIZ),
.TIMER_WID(WF_TIMER_WID),
.WORD_WID(WF_WORD_WID),
.WORD_AMNT_WID(WF_WORD_AMNT_WID),
.WORD_AMNT(WF_WORD_AMNT),
.RAM_WID(WF_RAM_WID),
.RAM_WORD_WID(WF_RAM_WORD_WID),
.RAM_WORD_INCR(WF_RAM_WORD_INCR)
) waveform_$2 (
.clk(clk),
.arm(wf_arm_$2),
.halt_on_finish(wf_halt_on_finish_$2),
.running(wf_running_$2),
.finished(wf_finished_$2),
.time_to_wait(wf_time_to_wait_$2),
.refresh_start(wf_refresh_start_$2),
.start_addr(wf_start_addr_$2),
.refresh_finished(wf_refresh_finished_$2),
.ram_dma_addr(wf_ram_dma_addr_$2),
.ram_word(wf_ram_word_$2),
.ram_read(wf_ram_read_$2),
.ram_valid(wf_ram_valid_$2),
.mosi(mosi_port_$2[1]),
.sck(sck_port_$2[1]),
.ss_L(ss_L_port_$2[1])
)
⟩)
/* Same thing but for ADCs */
m4_define(m4_adc_switch, ⟨
wire adc_mosi_unused_output_$2;
wire [$3-1:0] adc_mosi_port_$2; /* Unused! */
wire [$3-1:0] adc_sdo_port_$2;
wire [$3-1:0] adc_sck_port_$2;
wire [$3-1:0] adc_conv_L_port_$2;
spi_switch #(
.PORTS($3)
) adc_switch_$2 (
.select(adc_sel_$2),
.mosi(adc_mosi_unused_output_$2),
.miso(adc_sdo[$2]),
.sck(adc_sck[$2]),
.ss_L(adc_conv_L[$2]),
.mosi_ports(adc_mosi_port_$2),
.miso_ports(adc_sdo_port_$2),
.sck_ports(adc_sck_port_$2),
.ss_L_ports(adc_conv_L_port_$2)
);
spi_master_ss_no_write #(
.WID($1),
.WID_LEN(ADC_WID_SIZ),
.CYCLE_HALF_WAIT(ADC_CYCLE_HALF_WAIT),
.TIMER_LEN(ADC_CYCLE_HALF_WAIT_SIZ),
.SS_WAIT(ADC_CONV_WAIT),
.SS_WAIT_TIMER_LEN(ADC_CONV_WAIT_SIZ),
.POLARITY(ADC_POLARITY),
.PHASE(ADC_PHASE)
) adc_master_$2 (
.clk(clk),
.rst_L(rst_L),
.miso(adc_sdo_port_$2[0]),
.sck_wire(adc_sck_port_$2[0]),
.ss_L(adc_conv_L_port_$2[0]),
.finished(adc_finished_$2),
.arm(adc_arm_$2),
.from_slave(from_adc_$2)
);
/* 2nd option for each ADC is the non-converting option.
* This is used to flush output from reset ADCs.
* TODO: Lower power consumption by having SCK low while converter is
* not running? May require change to spi code.
*/
assign adc_sdo_port[1] = adc_sdo_port[0];
assign adc_sck_port[1] = adc_sck_port[0];
assign adc_conv_L_port[1] = 1;
⟩)
/*********************************************************/
/*********************** Verilog *************************/
/*********************************************************/
module base #(
parameter DAC_PORTS = 2,
m4_define(DAC_PORTS_CONTROL_LOOP, (DAC_PORTS + 1))
parameter DAC_NUM = 8,
parameter DAC_WID = 24,
parameter DAC_DATA_WID = 20,
parameter DAC_WID_SIZ = 5,
parameter DAC_POLARITY = 0,
parameter DAC_PHASE = 1,
parameter DAC_CYCLE_HALF_WAIT = 10,
parameter DAC_CYCLE_HALF_WAIT_SIZ = 4,
parameter DAC_SS_WAIT = 5,
parameter DAC_SS_WAIT_SIZ = 3,
parameter WF_TIMER_WID = 32,
parameter WF_WORD_WID = 20,
parameter WF_WORD_AMNT_WID = 11,
parameter [WF_WORD_AMNT_WID-1:0] WF_WORD_AMNT = 2047,
parameter WF_RAM_WID = 32,
parameter WF_RAM_WORD_WID = 16,
parameter WF_RAM_WORD_INCR = 2,
parameter ADC_PORTS = 2,
m4_define(ADC_PORTS_CONTROL_LOOP, (ADC_PORTS + 1))
parameter ADC_NUM = 8,
/* Three types of ADC. For now assume that their electronics
* are similar enough, just need different numbers for the width.
*/
parameter ADC_TYPE1_WID = 18,
parameter ADC_TYPE2_WID = 16,
parameter ADC_TYPE3_WID = 24,
parameter ADC_WID_SIZ = 5,
parameter ADC_CYCLE_HALF_WAIT = 5,
parameter ADC_CYCLE_HALF_WAIT_SIZ = 3,
parameter ADC_POLARITY = 1,
parameter ADC_PHASE = 0,
/* The ADC takes maximum 527 ns to capture a value.
* The clock ticks at 10 ns. Change for different clocks!
*/
parameter ADC_CONV_WAIT = 53,
parameter ADC_CONV_WAIT_SIZ = 6,
parameter CL_CONSTS_WHOLE = 21,
parameter CL_CONSTS_FRAC = 43,
parameter CL_CONSTS_SIZ = 7,
parameter CL_DELAY_WID = 16,
m4_define(CL_CONSTS_WID, (CL_CONSTS_WHOLE + CL_CONSTS_FRAC))
m4_define(CL_DATA_WID, CL_CONSTS_WID)
parameter CL_READ_DAC_DELAY = 5,
parameter CL_CYCLE_COUNT_WID = 18
) (
input clk,
input rst_L,
output [DAC_NUM-1:0] dac_mosi,
input [DAC_NUM-1:0] dac_miso,
output [DAC_NUM-1:0] dac_sck,
output [DAC_NUM-1:0] dac_ss_L,
output [ADC_NUM-1:0] adc_conv,
input [ADC_NUM-1:0] adc_sdo,
output [ADC_NUM-1:0] adc_sck,
m4_dac_wires(DAC_PORTS_CONTROL_LOOP, 0),
m4_dac_wires(DAC_PORTS, 1),
m4_dac_wires(DAC_PORTS, 2),
m4_dac_wires(DAC_PORTS, 3),
m4_dac_wires(DAC_PORTS, 4),
m4_dac_wires(DAC_PORTS, 5),
m4_dac_wires(DAC_PORTS, 6),
m4_dac_wires(DAC_PORTS, 7),
m4_adc_wires(ADC_TYPE1_WID, 0, ADC_PORTS_CONTROL_LOOP),
m4_adc_wires(ADC_TYPE1_WID, 1, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 2, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 3, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 4, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 5, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 6, ADC_PORTS),
m4_adc_wires(ADC_TYPE1_WID, 7, ADC_PORTS),
output cl_in_loop,
input [M4_CONTROL_LOOP_CMD_WIDTH-1:0] cl_cmd,
input [CL_DATA_WID-1:0] cl_word_in,
output reg [CL_DATA_WID-1:0] cl_word_out,
input cl_start_cmd,
output reg cl_finish_cmd
,output reg test_clock
);
wire [ADC_NUM-1:0] adc_conv_L;
assign adc_conv = ~adc_conv_L;
m4_dac_switch(DAC_PORTS_CONTROL_LOOP, 0);
m4_dac_switch(DAC_PORTS, 1);
m4_dac_switch(DAC_PORTS, 2);
m4_dac_switch(DAC_PORTS, 3);
m4_dac_switch(DAC_PORTS, 4);
m4_dac_switch(DAC_PORTS, 5);
m4_dac_switch(DAC_PORTS, 6);
m4_dac_switch(DAC_PORTS, 7);
initial test_clock <= 0;
`ifdef MAKE_TEST_CLOCK
reg [8-1:0] counter = 0;
always @ (posedge clk) begin
if (!rst_L) begin
counter <= 0;
test_clock <= 0;
end else begin
if (counter >= 3) begin
counter <= 0;
test_clock <= !test_clock;
end else begin
counter <= counter + 1;
end
end
end
`else
assign test_clock = 0;
`endif
m4_adc_switch(ADC_TYPE1_WID, 0, ADC_PORTS_CONTROL_LOOP);
m4_adc_switch(ADC_TYPE1_WID, 1, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 2, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 3, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 4, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 5, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 6, ADC_PORTS);
m4_adc_switch(ADC_TYPE1_WID, 7, ADC_PORTS);
control_loop #(
.ADC_WID(ADC_TYPE1_WID),
.ADC_WID_SIZ(ADC_WID_SIZ),
.ADC_CYCLE_HALF_WAIT(ADC_CYCLE_HALF_WAIT),
.ADC_CYCLE_HALF_WAIT_SIZ(ADC_CYCLE_HALF_WAIT_SIZ),
.ADC_POLARITY(ADC_POLARITY),
.ADC_PHASE(ADC_PHASE),
.ADC_CONV_WAIT(ADC_CONV_WAIT),
.ADC_CONV_WAIT_SIZ(ADC_CONV_WAIT_SIZ),
.CONSTS_WHOLE(CL_CONSTS_WHOLE),
.CONSTS_FRAC(CL_CONSTS_FRAC),
.CONSTS_SIZ(CL_CONSTS_SIZ),
.DELAY_WID(CL_DELAY_WID),
.READ_DAC_DELAY(CL_READ_DAC_DELAY),
.CYCLE_COUNT_WID(CL_CYCLE_COUNT_WID),
.DAC_WID(DAC_WID),
.DAC_WID_SIZ(DAC_WID_SIZ),
.DAC_DATA_WID(DAC_DATA_WID),
.DAC_POLARITY(DAC_POLARITY),
.DAC_PHASE(DAC_PHASE),
.DAC_CYCLE_HALF_WAIT(DAC_CYCLE_HALF_WAIT),
.DAC_CYCLE_HALF_WAIT_SIZ(DAC_CYCLE_HALF_WAIT_SIZ),
.DAC_SS_WAIT(DAC_SS_WAIT),
.DAC_SS_WAIT_SIZ(DAC_SS_WAIT_SIZ)
) cl (
.clk(clk),
.rst_L(rst_L),
.in_loop(cl_in_loop),
.dac_mosi(mosi_port_0[2]),
.dac_miso(miso_port_0[2]),
.dac_ss_L(ss_L_port_0[2]),
.dac_sck(sck_port_0[2]),
.adc_miso(adc_sdo_port_0[2]),
.adc_conv_L(adc_conv_L_port_0[2]),
.adc_sck(adc_sck_port_0[2]),
.cmd(cl_cmd),
.word_in(cl_word_in),
.word_out(cl_word_out),
.start_cmd(cl_start_cmd),
.finish_cmd(cl_finish_cmd)
);
endmodule