The LiteX framework provides a convenient and efficient infrastructure to create FPGA Cores/SoCs, to explore various digital design architectures and create [full FPGA based systems](https://github.com/enjoy-digital/litex/wiki/Projects).
- :heavy_check_mark: Complex cores through the ecosystem of cores: [LiteDRAM](https://github.com/enjoy-digital/litedram), [LitePCIe](https://github.com/enjoy-digital/litepcie), [LiteEth](https://github.com/enjoy-digital/liteeth), [LiteSATA](https://github.com/enjoy-digital/litesata), etc...
- :heavy_check_mark: Various CPUs & ISAs: RISC-V, OpenRISC, LM32, Zynq, X86 (through a PCIe), etc...
- :heavy_check_mark: Mixed languages support with VHDL/Verilog/(n)Migen/Spinal-HDL/etc... integration capabilities.
- :heavy_check_mark: Powerful debug infrastructure through the various [bridges](https://github.com/enjoy-digital/litex/wiki/Use-Host-Bridge-to-control-debug-a-SoC) and [Litescope](https://github.com/enjoy-digital/litescope).
- :heavy_check_mark: Direct/Fast simulation through [Verilator](https://www.veripool.org/verilator/).
- :heavy_check_mark: Build backends for open-source and vendors toolchains.
- :heavy_check_mark: And a lot more... :)
By combining LiteX with the ecosystem of cores, creating complex SoCs becomes a lot easier than with traditional approaches while providing better portability and flexibility: Here is for example a Multi-core Linux Capable SoC based on VexRiscv-SMP CPU, LiteDRAM, LiteSATA built and integrated with LiteX, running on a cheap repurposed [Acorn CLE215+ Mining Board](https://github.com/enjoy-digital/litex/wiki/Use-LiteX-on-the-Acorn-CLE-215):
For more info, have a look at [Linux-on-LiteX-Vexriscv](https://github.com/litex-hub/linux-on-litex-vexriscv) project and try running Linux on your FPGA board!
LiteX's digital logic is currently described with [Migen](https://github.com/m-labs/migen) which does not prevent users to create mixed language projects:
- It's very common and easy to integrate VHDL/Verilog/SystemVerilog/nMigen/Spinal-HDL code in LiteX!
- It's also very common to do the opposite and generate the LiteX design as a verilog file and integrate it in a traditional flow.
LiteX was initially developed by [Enjoy-Digital](http://enjoy-digital.fr/) to create projects for clients (and we are still using it for that :)) and trying to take the different clients' requirements/needs consideration made, we think, the framework very flexible:
- Some users only want to use it to easily interconnect their existing VHDL/Verilog/SV cores.
- Some users are only interested to reuse the PCIe/Ethernet/SATA/etc cores as regular core and just integrate them in their traditional flow.
- Some users with a hardware background start with the above approaches and then switch later to the full Python flow since find it more efficient.
- Some users with a software background and fluent with Python start playing with FPGAs while they would probably never touch FPGA otherwise :)
- Etc...
We are well aware that everyone has a different background, so it's up to you to pick the right approach with LiteX that will be convenient for you!
To get started we encourage you to read the [wiki](https://github.com/enjoy-digital/litex/wiki).
You already have a FPGA board(s)? Visit [LiteX-Boards](https://github.com/litex-hub/litex-boards) to see if your board(s) is already supported!
The framework is also far from perfect and we'll be happy to have your [feedback or/and contributions](https://github.com/enjoy-digital/litex/wiki/Feedback-Contribution-Support).
**Moral precisions**: The project is shared with a permissive BSD 2-Clause License and we are encouraged to continue sharing it this way thanks to the awesome community and clients willing to support the project!
If the projet is useful for your research, hobby or commercial projects, we are just asking you to be coherent and behave with integrity: Don't expect free support or that the community will be welcoming if your spent your time complaining about the project (and then direspect developers) or don't pay the custom developments you asked for... (While it's probably natural for 99% of users/clients, it does seems useful to add this for the 1% remaining that are eating lots of our energy/time).
LiteX already supports various softcores CPUs: VexRiscv, Rocket, LM32, Mor1kx, PicoRV32, BlackParrot and is compatible with the LiteX's Cores Ecosystem:
Over the years a friendly community has grown around LiteX and the ecosystem of cores. Feedbacks and contributions have already greatly improved the project, EnjoyDigital still leads the development but it is now a community project and collaborative projects created around/with LiteX can be found at https://github.com/litex-hub.